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Abstract

Multi-model ensemble combination (MMEC) has become an aecefech-
nigue to improve probabilistic forecasts at short to loagge time scales. MMEC
techniques typically widen ensemble spread, thus impgpthe dispersion char-
acteristics and the reliability of the forecasts. Thiseaithe question as to whether
the same effect could be achieved in a potentially cheapgtyaescaling single
model ensemble forecasts a posteriori such that they beraiakle. In this study
a climate conserving recalibration (CCR) technique is deried compared to
MMEC.

With a simple stochastic toy model we show that both CCR and MM&E
cessfully improve forecast reliability. The differenceween these two methods is
that CCR conserves resolution but inevitably “dilutes” théeptially predictable
signal, while MMEC is in the ideal case able to fully retaire thredictable sig-
nal and to improve resolution. Therefore, MMEC is concelpfita be preferred,
particularly since the effect of CCR depends on the length efdéta record and
on distributional assumptions. In reality, however, maitbdels consist only of a
finite number of participating single models, and the modedrs are often cor-
related. Under such conditions, and depending on the skittimapplied, CCR
corrected single models can on average have comparahblaskilulti-model en-
sembles, particularly when the potential model prediditghis low. Using sea-
sonal near-surface temperature and precipitation forecdghree models of the
DEMETER dataset, we show that the conclusions drawn fromidjrenodel ex-
periments hold equally in a real multi-model ensemble texh system.

All'in all, it is not possible to make a general statement orethler CCR or
MMEC is the better method. Rather it seems that optimum fatsczan be ob-
tained by a combination of both methods, but only if first MMBQ then CCR is
applied. The opposite order - first CCR, then MMEC - is shown toflmanty little

effect, at least in the context of seasonal forecasts.



1. Introduction

The use of ensemble prediction systems (EPS) has becomdex ofatutine in
the context of weather and climate risk management, andstaaited methods of
ensemble generation are meanwhile well-established. #wehile such ensem-
bles successfully quantify the forecast uncertaintiesiragifrom the uncertainties
in the model initialization, they fail to capture the uneénties arising from errors
and simplifications in the model itself. For example, theartainties due to the pa-
rameterization of physical processes, the effect of uivedascales, or imperfect
boundary conditions, are not quantified (Buizza et al. 20@5w&erz et al. 2006;
Weigel et al. 2007a). Consequently, ensemble distributigrisally underestimate
the true forecast uncertainty and tend to be overconfiderfuaerdispersive”),
i.e. they are too sharp while being centered at the wrongevalu

As a pragmatic approach to overcome this problem, it has beggested
to combine several ensemble prediction systems to form d-mobel super-
ensemble (Krishnamurti et al. 1999; Palmer et al. 2004)1 \WMag, at least a crude
estimate of the range of uncertainties due to model errarsbeaobtained. The
success of this approach has been demonstrated in mangss{adi. Rajagopalan
et al. 2002; Robertson et al. 2004; Hagedorn et al. 2005; Stegam et al. 2005).
Other approaches, such as the introduction of ‘stochahbijsips’ (Buizza et al.
1999) or the ‘perturbed parameter’ approach (Pellerin.€2@3) will not be con-
sidered here. In essence, multi-model ensemble combm@IMEC) widens the
ensemble spread and reduces the root mean square erroy @intke ensemble
means, thus reducing forecast overconfidence and improhetprecast reliabil-
ity. Indeed, for seasonal forecasts it has been shown thaE®IN of only little
effect if the single model ensembles (SMES) contributinghe multi-model en-
semble (MME) are already reliable (Weigel et al. 2008b; \&kgmnd Bowler 2009).

But does it then really need a multi-model approach to redoe®verconfidence



of ensemble forecasts? Could the same effect not be achie\eedheaper way
by “simply” rescaling unreliable SMEs a posteriori suchttitiey become reliable,
i.e. by an appropriate recalibratithls there a difference at all between MMESs on
the one hand and recalibrated SMEs on the other hand witlecegsptheir skill
properties?

There are many studies which demonstrate that recalibra®well as related
techniques such as ‘ensemble dressing’ (Roulston and S6068) 2do improve the
prediction skill significantly (e.g. Atger 2003; Doblas-Rsyet al. 2005; Feddersen
and Andersen 2005), but the conceptual differences betavediability correction
by MMEC and a reliability correction by recalibration havelypbeen addressed
in very few studies. Doblas-Reyes et al. (2005), for examgeclude from the
evaluation of seasonal forecasts that ensemble spreagttiornr does improve the
prediction skill, but not beyond the skill of a MME. Howevéneir recalibration
procedure not only rescales the ensembles but also cofeecgstematic spatial
shifts, making it difficult to quantify the mere effect of emsble spread correction.
Moreover, they have not corrected for ensemble size indbzsgs when compar-
ing the prediction skill of SMEs and MMESs, thus being unfagamst the single
models (Weigel et al. 2007b,c). Indeed, applying a debiasedication context
and a stochastic toy model, the study of Weigel et al. (2008b¢ates that recali-
brated SMEs actuallgan outperform a MME under certain conditions, but at the
cost of correlation between the forecasts and the obsengati

The present study seeks to close the gaps of Doblas-Reyes(20@b) and
Weigel et al. (2008b) and seeks to comprehensively ansveefottowing ques-
tions: What is the fundamental difference between the skilprovement due

to MMEC and the skill improvement due to appropriate recalion? How do

IFollowing Mason (2008) we will use the term “calibration’rfthe correction of systematic errors, such as
systematic biases in model climatology, while the term atdcation” will refer to additional corrections of the
model output to improve reliability, e.g. by ensemble indlat In the remainder of this study, “ensemble spread
correction” and “recalibration” will be used as synonyms.



MMEC and recalibration affect the different attributes oégiction skill? And
can one of these two techniques be considered more valuaiethe other one
from a user perspective? Or should they be applied in unigdaaif yes, in which
order?

We will investigate these questions by applying an improaed, for the con-
text of seasonal forecasts, more realistic version of thgpla synthetic Gaussian
forecast ensemble generator (“toy model”) used by Weigal.§2008b), and by
evaluating temperature and precipitation forecasts oabseasonal MME predic-
tion system.

The paper is structured as follows. Section 2 presents theepdual back-
ground of this study, and the methods of MMEC and recalibradire introduced.
Sections 3 and 4 describe the stochastic toy model and tifeeaBon context. In
Section 5, the core of this study, the toy model is systerallyiapplied to inves-
tigate and discuss the differing effects of MMEC and recalilbn on prediction
skill. The findings are substantiated with a real seasonaB\ivediction system
in Section 6, and a generalization of the recalibration wetto skewed data is

suggested. Concluding remarks are presented in Section 7.

2. Methods

a. Multi-model ensemble combination (MMEC)

MMEs are constructed by simply pooling together the paréiting single model
ensembles (SMEs) with each ensemble member having equght(eig. Hage-
dorn et al. 2005). More sophisticated approaches in whielp#rticipating SMEs
are weighted according to their prior performance (e.g. taalan et al. 2002;
Robertson et al. 2004; Stephenson et al. 2005; DelSole 208igel\et al. 2008b;

Pdia and van den Dool 2008) are not considered here. Note tiatn @wpply-



ing MMEC and discussing its effects, we always assume treéByatic biases in
mean and variance of the model climatologies have been rednorior to model
combination as described, e.g., by Weigel et al. (2008b¢. gdtentially beneficial

effect of MMEC on such systematic errors is therefore nosaered in this study.

b. Climate-conserving recalibration (CCR)

We now derive the recalibration method applied in this stddye concept itself is
not new and has already been applied by Doblas-Reyes et 8b)2Bowever, a
theoretical derivation has not been presented in litegatGince the recalibration
algorithm is designed such that it does not introduce syatierhiases in mean and
variance to the model climatologies, it will henceforth le¢erred to as climate
conserving recalibration (CCR).

We start from a conceptual model of (seasonal) predictgfsimilar to the one
described by Kharin and Zwiers (2003). Consider a set of ebtiensz (e.g. sea-
sonal averages of surface temperature at a given locawkssume that each ob-
servation can be formulated as the sum of a model-predetsighaly,, and an
unpredictable noise term),, that isz = u, + ¢,. Following Kharin and Zwiers
(2003), .1, can be thought of as the expected atmospheric responsevy skry-
ing and predictable boundary conditions such as anomalssa-surface tempera-
ture, whilee,, represents the chaotic and unpredictable components obseved
dynamical systemz, i, ande, are assumed to be stochastic Gaussian processes
with zero mean, i.e. anomalies are considered rather thsolutb values. Let
o; ando’. be the variances of and ., across time. Further let? (¢) be the
unpredictable internal variability at time i.e. the variance of the (hypothetical)
distribution of possible outcomes, given the predictalgeal 1., (¢). Note thatr?,
is time-dependent, that is the level of predictability i®akd to vary from case to

case. Under these assumptions, a specific observationeat tiam be formulated



as:

z(t) = palt) + ealt) (1)

Mm(t) ~ N(O7Uﬂ2)
€x(t) ~ N(0,0(1))

~ N (u, o) thereby meansa random number drawn from a normal distribution
with meanu and variances?. This concept is illustrated in Figs. 1(a) and (b): the
presence of a given predictable sigpalshifts, and on average also narrows, the
distribution of possible outcomes with respect to climagyl

Now assume that prior to each observatioa corresponding/-member en-
semble forecast = (fi, fo, ..., fur) has been issued. Assume that these forecasts
are issued as anomalies with respect to the mean of the mlagdatalogy. If the
ensemble forecasts are perfectly reliable, then the oasensx and the individ-
ual ensemble member forecagisshould be statistically indistinguishable from
each other for all € {1, ..., M}. This implies (i) thatr} = o2 (whereo? is the
variance off; across time) and (ii) that, for any given predictable signat), each
forecast membef;(t) represents an equally likely random sample from the distri-
bution of possible observable states, given the predietsighal.,.(¢). A reliable

ensemble forecast therefore has the following structure:

fit) = pe(t) +e(t) (2
with :

€z<t) ~ N(0,0’ez@))



The ensemble mean is then an unbiased estimator of the fael@isignal, and
the ensemble spread quantifies the uncertainty of the trigeme (illustrated in
Fig. 1c).

For real ensemble prediction systems, however, model thimgies tend to be
different from the observed climatology (ize]%i # 02), and the expected ensemble
meang. , that is thepredictedsignals, are not identical with tipgedictablesignals

1. In the general case, Eq. 2 must therefore be formulatedlas/f

filt) = pp(t) + &) 3)

with :

pe(t) ~ N(0,0,)
€i(t) ~ N(0,00ms(t))
(4)

Note thato.,s(t) quantifies the intra-ensemble spread at tinend generally is
different fromeo,_ (¢). Also note that the individual member forecagtswhile still
being statistically indistinguishable from each othee, mow statistically different
from the observations. In such a forecasting system, the ensemble mean is not
an unbiased estimator of the predictable signal any morme F&g 1d) and the
forecasts are unreliable.

To make unreliable forecasts reliable, we employ the fatgwacriterion of
reliability which is valid for normally distributed ensemebforecasts (Toth et al.
2003; Palmer et al. 2006): ensembles are reliable if, angigrthe mean square
error (MSE) of the ensemble mean foreca$isy E (¢, z), is identical to the time-
mean intra-ensemble variance, denotedd¥ .);. The basic idea of CCR is to

scale the ensemble mean forecgsisby a factorr and to scale the ensemble



spreads by a factoy, that is to construct new forecasts

£l THf t SE

. M;CCR) +€Z(CCR) (5)

such that (i) the aforementioned reliability criterionadisfied, and (ii) the forecast
climatology is identical to the observation climatologys shown in Appendix A,

these conditions are fulfilled if

Og

ro= p(x,,uf) . (6)

Oz

<U§ns>t

s = 1—p(zpp) 7

p (1s, z) is the Pearson correlation coefficient betweeand.,. Note that, if the
model climatology has a sytematic bias in variance 65@.7& 0?), this is auto-
matically corrected for by CCR. Indeed, regardless whethemibae| climatology
is explicitly calibrated prior to CCR or whether CCR is directjypdied, in both

cases the same values 136? “® would be obtained.

3. The stochastic toy model
a. Definition

Motivated from the conceptual model of Kharin and Zwiers02)) we have devel-
oped a synthetic Gaussian generator of forecast-obsenvaéirs. It is designed
such that, for a given predictable sigpal it generates an observatiorand a cor-
responding\/-member ensemble forecdst (f1, ..., fur) fulfilling preset condi-

tions with respect to forecast skill and ensemble properfidhese conditions are



controlled by two free parameters,and, with o € [0, 1] andj € [0, m}.
As will be elucidated further belowy controls the potential model predictability,
while 3 controls the dispersion characteristics of the forecasteles. The toy
model has standardized and well-calibrated climatologiess> = o7, = 1 for all
ie{l,..,M}.

For given values oft and3, the following three steps are undertaken to gener-
ate a forecast-observation-pair:

Step 1:A predictable signal., is sampled:
e ~ N (0, @) . (8)

Step 2:An “observation”z is constructed by sampling an unpredictable noise

terme,, which is then added ta,:

T = izt € 9)
with:

& ~ N(0,V1-a?)

Note thato? = 1 for all « € [0, 1]. Also note that? is uniquely determined by
and hence, itv is kept constant, does not vary from observation to observéin

contrast to Eq. 1).

Step 3:A “forecast ensemblef is constructed by imposing a scalar perturba-
tion e and an independently sampled vector perturbation.., e,,) on the pre-

dictable signal.,:



f1 €1
Bl hetest | (10)
fM €M
with:
g ~ N(0,0)

€1,€2,...,€pp N(Oyaens)

Oens — \/1_052_52

Note that the forecast signal = p, + €3 is generally different from,,, and note
thato = 1forallo € [0,1] and allj € [O, M}. Further note that,,,; only
depends omv and 3 and hence, itv and 5 are kept constant, does not vary from
forecast to forecast (in contrast to Eq. 3).

If a multi-model consisting ofV SMEs is to be constructed, step 3 is repeated
N times, yielding N forecast ensembles”, ..., f) which are then pooled to-
gether to a MME. Note that here it is assumed that all padioyg SMEs “see”
the same predictable signal. Transferred to a real prediction context, this im-
plies that all models are assumed to be based on the samesamd processes
of predictability, but differ in the way the ensembles reganet the remaining un-
certainties. At least in the context of seasonal forecgstims assumption can be
justified to some degree (Weigel and Bowler 2009), given thptesent state-of-
the-art seasonal prediction systems reveal globally viemjas patterns of poten-
tial predictability (Yoo and Kang 2005), and given that tipeyform almost equally
well in predicting tropical Pacific SST anomalies (Goddardle2001), which are
associated with ENSO, the most dominant signal of globade®al climate vari-

ability.
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b. Interpretation ofa and

How can the two design parametersand 5 be interpreted? By construction,
controls the variance of the predictable signaland thus also the variance of the
unpredictable noise,. If « = 0 the predictable signal, is zero and the variance
of ¢, is 1. Asa grows, i, increases in strength with respect to the noise until, for
a =1, ¢ is zero. Indeed, the rati®; /o2 = o is often referred to as a the po-
tential predictability of the system (Zwiers 1996; RowelP89Kharin and Zwiers
2003); in this terminology¢ therefore controls the potential model predictabil-
ity? of the toy model. From Egs. 9 and 10 one can derive tat f;) = o?,
i.e. the potential model predictability can be convenieettimated from the av-
erage correlation between the individual ensemble mendetthe observations
(see Section 4a).

The second paramete, controls the error terms and thus the degree to
which the predicted signal; deviates from the predictable signal - rather like
the idea of model error which affects all ensemble membeuslgq If 5 = 0,

.y is identical top, and the ensemble members truly sample the uncertainties due
to the unpredictable noise, i.e. the forecasts ameliable (see also Weigel and
Bowler 2009). Asg grows, the ensemble spread (controlleddyy,) decreases
while the magnitude of3, i.e. the random error qgf, increases. For positive,

the ensemble forecasts are too sharp while being centettbd atrong location.
Thus, 3 controls the degree of ensemble overconfidence (or ungerdion) - a

frequently observed characteristic of real ensemble &wtsc(e.g. Weigel et al.

2008a,b).

2In literature, the term “potential predictability” is aledten referred to as the skill that is obtained if ensemble
members are verified against each other rather than agasetwations (perfect model approach, e.gllkr et al.
2004).

11



4. Verification

In the following the verification context of this study is dissed. Since forecast
quality is a multi-faceted term and cannot be summarized biygle skill score
(e.g. Murphy 1991), four skill metrics will be applied to chaterize the impacts
of MMEC and CCR. These are (a) potential model predictabiltyréliability, (c)

discrimination, and (d) the ranked probability skill SCRPSS).

a. Potential model predictability

In Section 3b it has been shown that the Pearson correlaigffident between the
individual ensemble members and the observations is a meémuthe potential
predictability of the toy model (in the sense as defined byrirend Zwiers 2003).

We therefore apply

M
Ppot = M Z p(fi,x) . (11)

as a measure of potential model predictability, witty;, x) being the Pearson
correlation coefficient between thh ensemble member and the observatidis.

is the ensemble size.

b. Reliability

Reliability quantifies how consistent the forecast probid are with the rel-
ative frequencies of the observed outcomes (e.g. Mason taphé&hson 2008).
As already mentioned in Section 2b, normally distributedesnble forecasts are
reliable if and only if thermse of ensemble means and observations is identi-
cal to the time-mean ensemble sprm. If \/@ > rmse(uys, z) the
forecasts are underconfident (only rarely observed in nes¢mble forecasts), if

<O-gns

) < rmse(us,z) the forecasts are overconfident. Based on this fact, we

12



define as a measure of reliability:

(rmse(,uf, r) — <U§ns>)
rmse(fis, )

REL = (12)

If REL = 0 (REL > 0; REL < 0) the forecasts are reliable (overconfident;

underconfident).

c. Discrimination (resolution)

The forecast attribute afiscriminationquantifies the degree to which forecast dif-
fer, given different outcomes. As a measure of discrimoratve apply the prob-
ability that, given any two observations, the mutual ragkih these two observa-
tions can be correctly predicted from the correspondingmide mean forecasts.
This measure is a special case of thw-alternative forced choice scofe ¢
which has been described in detail by Mason and Weigel (2008)he present

context, it is given by

D2AFC = 0.5 [7‘ (,uf, %) + 1] . (13)

7 (ps, z) thereby denotes Kendall's (ranked) correlation coefficiheshkin 2007)
between the ensemble means and the observations.

Note that a non-informative prediction system hasrc = 0.5. This can be
plausibly interpreted as the probability of getting theatige ranking of any two
observations right by simple guessing. Also note thatesing.;, z) = 7 (z, uys),
thepaarc can here equally be interpreted as the probability that tiseiwed out-
comes differ, given different forecasts. This is a foreedistbute that is known as
resolution(e.g. Mason and Stephenson 2008). Resolution and disctiorinaill

henceforth be used as synonyms.
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d. Ranked probability skill score

The RPSS (Epstein 1969; Murphy 1969, 1971) is one of the ma$tlywiused
summary skill scores and measures both reliability andwuéea. It is a squared
measure comparing the cumulative probabilities of caiegbforecast and obser-
vation vectors relative to a climatological forecast &gyt In this study, the RPSS
will be applied for three equiprobable categories.

A big caveat of the RPSS is its strong negative bias for smakmble sizes
(e.g. Buizza and Palmer 1998; Richardson 2001; Kumar et al;208son 2004).
The reason for this bias is thetrinsic unreliability of small ensembles, leading
to inconsistencies in the formulation of the RPSS. In the extnof the present
study this property is problematic, since it implies that RPSS favors MMEs
due to their larger ensemble size. To ensure a fair, i.e neiieesize independent,
comparison between SMEs (ensemble siZz¢ and MMEs, we randomly sam-
ple sub-ensembles of sizd from the multi-model and use these sub-ensembles,
rather than the full MMEs, for verification. An alternativieeagegy that is some-
times applied, namely the use of a correction formula to rentbe ensemble-size
dependent bias (Weigel et al. 2007b,c; Ferro et al. 2008natabe applied here
because the underlying assumption of “ensemble membeaegehbility” does

not hold for recalibrated ensembles (see Appendix B).

5. MMEC and CCR of toy model forecasts

In this section we apply the toy model of Section 3 and thefigation context of
Section 4 to systematically investigate the effects of MMV#E@ CCR on prediction
skill.

14



a. The effect of MMEC

The effect of MMEC has already been investigated in detaVangel et al. (2008b)
and is therefore only briefly summarized here. Assume tloatafgiven poten-
tially predictable signal.,, a total of N overconfident toy model SME forecasts
have been issued and are to be combined. Further assumevitinatt loss of
generality, all SMEs are based on the same toy model paresnetend 5, and
that the individual “model error terms’; are independent from each other. Each
of these SMEs then has an ensemble spreag,of = /1 — a? — 52. The ex-
pected ensemble mean of the resulting MME forecast is Idcatg."' """ =

te + + [e3(1) + ... + €g(N)], with e5(n) being thees value sampled for the-th
model. ForN — oo, the MME meanu{""*"* converges towards,, while the
expected MME spread widens and approaches a valag,pf= /1 — o2, which

is the spread of a reliable SME with= 0. This has been discussed and proved in
Weigel et al. (2008b) and is illustrated in Fig. 2 (a corrasfing illustration of the
effect of CCR is shown in Fig. 3 and will be discussed later intéht). In other
words, the combination of independent overconfident modédens the MME
spread while reducing the error in the ensemble locatiore [&lger the number
of overconfident models contributing to the MME, the moreglttee MME lose
its overconfidence characteristics in favor of the charesties of well-dispersed
ensembles. Such an MME with independeptind N — oo will henceforth be
referred to as ideal MME.

How does this behavior translate into prediction skill? Bore 0.7 and a
range ofa-values witha < /1 — 32, 100,000 sets of observations, correspond-
ing SME forecasts and “ideal’N = 100) MME forecasts are generated. Using
these data, the expected valuepgpf (Fig. 4), REL (Fig. 5), p2arc (Fig. 6) and
RPSS (Fig. 7) are then calculated and plotted as functions of teegibed po-

tential SME predictability»?. For the moment, only consider the black solid lines

15



(overconfident SME forecasts) and the heavy gray solid I{icesal MME fore-
casts). The remaining lines will be discussed later in the t€he results can be
summarized as follows:

1. Potential model predictability (Fig. 4): MMEC leaves, unchanged. This
is not surprising, given that all contributing SMEs and thiso the MME by con-
struction “see” the same potentially predictable signak N (0, «). Thus, under
the idealizing assumptions made, the potential model prauiiity is conserved
by MMEC (see also Weigel et al. 2008b).

2. Reliability (Fig. 5): The overconfident SMEs reveal pasitiR £/ L-values
over the entire range ef?, implying that the forecasts are overconfident. This is
what one would expect, given that> 0. The ideal MMESs, on the other hand,
haveREL = 0 and are therefore perfectly reliable (see also Fig. 2d).

3. Resolution (Fig. 6): The, 4rc-score of both the SMEs and the ideal MMEs
increases as? increases, because higher correlation implies higheridistative
power of the forecasts. The MME thereby consistently sdoigtser than the SME,
because reduced overconfidence not only implies wider dnisespread, but also a
reduction in the random error of the ensemble mean (Weiggl 2008b), thus im-
proving the probability to correctly discriminate betwee observed outcomes.
It is interesting to note that resolution is frequently adesed to be a measure of
potential predictability, a view which is not supported b differing behavior of
p2arc andp,q. Indeed, a contour plot gf, 4 for SMEs as function oft and 3
(Fig. 8) shows that the isolines p$ 4 are inclined and therefore not equivalent
with «, i.e. with potential predictability.

4. RPSS (Fig. 7): MMEC strongly improves the RPSS over theeerdinge of
a?-values, which is plausible, given the improvements irafglity and resolution.

All'in all, the results show that MMEC in the ideal case fullyrcects for relia-
bility deficits and improves the forecast resolution, whiiie potential predictabil-

ity is conserved. These characteristics become more,ctaggly less, pronounced

16



as/j is increased, respectively decreased (not shown)sFEei0, none of the four
skill metrics is modified at all by MMEC, since the participggiSMES are already
reliable and all sampled from the same parent distribut®tha MME. However,
we want to stress that this conclusion only holds if the medelrs are sufficiently
independent, and if all participating SMEs are based ondheegpredictable signal

1, as is the case with the present toy model (see Section 3a).

b. The effect of CCR

What is different when CCR is applied on overconfident toymodeddasts? We

start by formulating the CCR factorsands as functions ofv and. From Eqs. 8-

10 follows: 0, = 1, 0, = Va2 + 3% p(z,pp) = o*/v/a? + 2 andoe,s =
V1 —«? — 2. Using these identities in Egs. 6 and 7, expressions &ords can

be formulated:

Oé2

r = e (14)
a?(1 — a?) + 32

S = \l(a2+62)(1_a2_52)

It is easy to see that< 1, and it can be shown that> 1. Thus, for overconfident
SMEs, CCR effectively widens (i.e. inflates) the ensembleapfe > 1) while
at the same time the ensemble mean is moved towards the alogiatill mean
(» < 1). This means that the gain in intra-ensemble variance dwmsemble
inflation is compensated by a reduction of forecast sign@hmae. This is required
to keep the forecast climatology well-calibrated (. = o}, = 0, = 1).

As in the previous subsection, we evaluate hQw, REL, poapc andRPSS
behave if CCR is applied (displayed as black dashed lines & B{J).

1. Potential model predictability (Fig. 4): CCR strongly redsp,,;. Calcu-

17



lation reveals thap,; is reduced from a value ef?* down to a value obz()ftCR) =
o~
a? (1 + %)

2. Reliability (Fig. 5): As for the ideal MMEs, CCR effects a pmaf correction

1

of reliability.

3. Resolution (Fig. 6): Resolution is conserved under CCR, bedhedinear
transformation of the ensemble mean forecasts {viaEq. 6) does not modify
their relative ranking and thus preserves their discritiregoower.

4. RPSS (Fig. 7): CCR improves the RPSS, but not as much as MMEC. The
reason is that MMEC, in contrast to CCR, not only improves rditgiut also
improves resolution, which is rewarded by the RPSS.

All in all, the most notable effect of CCR is, apart from the iimyEment in
reliability, the destruction of potential model prediatap. Given that the vari-
ance of the predictable signaldﬁz = ppot (Section 3b), the reduction in,,; due
to CCR implies a dilution of the predictable signal. Indeed,E3Mhat have been
made reliable by CCR do not any more sample the distributionogtiple out-
comes which are consistent with; rather, they sample the wider distribution of
outcomes which are consistent with the remaining “effetyi/predictable signal
pett ~ N (O, W) (illustrated in Fig. 3). This observed reduction in sharp-
ness is plausible since the CCR-corrected SMEs must addigiawdount for the

uncertainties due te;.

c. Discussion

From the toy model simulations and conceptual considaratiescribed above,
the following fundamental difference between MMEC and CCR larcrystal-

lized: Both methods are successful in making overconfidergctsts reliable;
however, MMEC provides a reliability correction with conged correlation, while

CCR provides a reliability correction with conserved resolut Conserved cor-
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relation implies an improvement in resolution, while canee resolution implies
a reduction in correlation, or potential model predict#épil This is illustrated in
the contour plot of Fig. 8: consider a given overconfidentrtmdel SME with pa-
rametersy andg, which can be displayed as a pointan3-space (e.g. point “a”).
Both MMEC and CCR move “a” down to the = 0 line, making the forecasts reli-
able. MMEC does so without changiiag yielding point “b” which has improved
resolution as compared to “a”. CCR, on the other hand, moves fadinlown to
the 3 = 0 line along the respective isoline of resolution (point ;dgading to a
reduction ina and thus in potential model predictability.

While these results suggest that MMEC is never inferior to CCBangless
which skill metric is applied, one must consider that in itgainulti-models are
not “ideal”. Usually, the number of participating SMEs isaimand the model
errors (i.e. thez-values in our toy model context) tend to be correlated (¢og.
and Kang 2005). To address this aspect, Figs. 4-7 addilyosiabw the skill val-
ues obtained from dualmodel, i.e. a MME that consists of only two SMEs: once
for independents (thin solid gray line), and once for dependept(correlation
coefficient 0.5, dashed gray line). For all skill metrics geom p,.;, the skill
improvement due to MMEC is less pronounced if only two mo@eéscombined,
and even worse, if the model errors are correlated. In Fige&ituation of such a
more “realistic’ MME is illustrated as point “d”, which is me reliable than “a”,
but not perfectly reliable as the ideal MME “b”. In terms of R®Skill (Fig. 7),
it is interesting to note that particularly for forecastsl@i potential model pre-
dictability (i.e. smalla?), the CCR corrected SMEs are comparable if not better
than the “realistic’ MMEs. The reason is that the MMEC adeaet of improving
resolution (Fig. 6) is comparatively weak for smafland is more than outweighed
by the better reliability correction of CCR. Having said thatsiessential to note
that in a real forecasting context also the uncertaintiehénCCR parameter es-

timation need to be considered (not done here), relatigiie above conclusion.
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Indeed, the expected reliability and skill improvement due€CCR is reduced if
only small training data sets are available, if the ensemiskeibutions do not sat-
isfy the assumption of normality (further discussed in ®&c6), or if the system
IS subject to trends over the training period (Liniger e28107). This discussion
shall therefore not be understood as a plea against mulletepbut rather as a
plea to combine as many independent models as possible inmeaxhe benefi-

cial effect of MMEC.

Finally, for the case of imperfect MMEs, we want to discusethier MMEC
and CCR can be combined and used in unison such that the faretasin opti-
mum characteristics w.r.t. reliability and resolution. é3gould, for example, first
recalibrate all participating SMEs and then combine theseMIME. Alternatively,
one could first combine the “raw” SMEs and then recalibragerésulting MME.

The first option (“recalibrate, then combine”) is withoutd#itbnal effect be-
yond the effect of CCR. This is because the CCR-corrected SMEs kaverbade
reliable and see the same predictable signatinder such conditions MMEC can-
not improve the prediction skill of reliable forecasts (@&iand Bowler 2009). In
other words: Once a fraction of the potentially predictagilgnal has been de-
stroyed by recalibration, this loss cannot be recovered MB®@. Fig. 8 provides
an illustration of this situation: The combination of sele8MEs that have been
CCR corrected (point “c”) is without effect, since “c” alreaidyon the3 = 0 line.

Conceptually more promising is the second approach ("coeplilven recali-
brate”). As discussed above, by combining the available §M#iability and res-
olution are improved by some amount without reducing thepiidl| predictability
(point "d” in Fig. 8 if we assume a “realistic’ MME). SubsequeCCR on “d”
could then in principle remove the remaining reliabilityfidgs without chang-
ing resolution, i.e. point “d” would be moved down to point’“eThat way, a

full reliability correction could be achieved under minimuwdestruction of poten-
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tial predictability. However, in the context of the presguatper, this approach
is somewhat hypothetical since realistic MMEs tend to hauétirmodal distribu-
tions (e.g. Figs. 2b and c), thus violating the Gaussianmagsans of CCR. There-
fore, other recalibration methods that are beyond the sobthes paper would be
required to demonstrate the effect of this approach. Ljleelgh methods would re-
quire even larger training data sets. In the case of welhddfdichotomous events,
an approach based on reliability diagrams as applied byétatral. (2008) could

be a viable option.

6. MMEC and CCR of real seasonal forecast data

So far, all results have been obtained on the basis of a si@glssian-type toy
model. It is the aim of this section to investigate whether ¢bnclusions on the

effects of CCR and MMEC also hold for real seasonal ensembtiqiens.

a. Data

Ensemble forecasts of three operational seasonal pr@dsystems are evaluated
and combined: ECMWF’s System ZH’ , Anderson et al. 2003), the UK Met Of-
fice’'s GloSea'U” , Gordon et al. 2000), and the coupled ocean-atmospherelmode
of the Centre National de Recherchegt®brologiques of Mteo-France “C” ,
Déque 1997). Hindcast data of these three models are obtoradhe DEME-
TER data-base (Palmer et al. 2004). Although this data-basgrises hindcasts
of seven different models, we have restricted ourselve$iaattiree models the
operational European Multimodel Seasonal to InterannteadiBtion System (EU-
ROSIP, Vitart et al. 2007) is based upon.

We consider hindcasts of mean summer near-surface (2 meterperature

and total precipitation, averaged over the months Jung ahd August. All hind-
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casts have been started from 1 May initial conditions. Farperature, the hind-
cast period is 1960-2001. The forecast data are CCR-correstedesified grid-

pointwise against the corresponding “observations” friwe 40-yr ECMWF re-

analysis (ERA40) data set (Uppala et al. 2005). For pretipitathe observations
stem from the Global Precipitation Climatology Program (GPFGfer details see
Adler et al. 2003). For data availability reasons, only tkeeiqud 1979-2001 is
considered here.

Both forecasts and verifying observations are interpolated grid with 2.8 x
2.5 resolution. Prior to any recalibration, combination andfi@tion operations,
the model climatology is calibrated grid-pointwise, i.gstematic biases in the
mean and variance of the model climatology are removed agibed in Weigel
et al. (2008b). Indeed, when referring to “raw” SME foresaste henceforth
assume that the model climatologies have already beerra@id For the RPSS
evaluations, three equiprobable categories are consideist as in the toy model
experiments above. The terciles separating the three araegare determined
from the hindcast and observation data separately.

The temperature forecasts are evaluated in “retroactivéefnoThis means
that for each target year to be verified, only data prior taéinget year are used as
training data for the computation of the observation and ehtefciles, bias cor-
rections and the CCR rescaling parameteaads. As target years for verification,
we chose 1980-2001. The corresponding training data stam the respectively
20 years prior to each target year. Generally, a retroaethaduation is consid-
ered to yield the most realistic approximation of an operel prediction context
(Mason and Baddour 2008), particularly in the presence ofstationarities in the
climate system such as trends (Liniger et al. 2007). Thenastidr ands values
obtained are often substantially different from 1. For eglanfor modelE” , typ-

ical r-values §-values) are on the order of 0.5 (1.2), clearly indicatingesnble

3http://lwf.ncdc.noaa.gov/oa/wmo/wdcamet-ncdc.html
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overconfidence.

For the precipitation forecasts, a retroactive evaluaigonot possible due to
the smaller sample size. Instead, a “one-year out crosga@n” (Wilks 2006)
is applied, meaning that all years available, apart frontdnget year, are used as
training data. Note that both for the temperature forecaststhe precipitation
verification, the length of the training data set is twentange which is compa-
rable to the hindcast length of real operational statdiefart seasonal prediction

systems.

b. Forecasts of near-surface (2m) temperature

For the evaluation of seasonal forecasts of 2m temperatarassume that the
climatologic and forecast distributions are Gaussianhad €CR can be applied.
The assumption of normality is admittedly a very simplifyione, but can be jus-
tified as a first rough estimate for this variable (Wilks 202Q06; Weigel et al.
2008Db). For each grid-poing,..;, REL, poarc andRPSS are obtained for (i) the
raw SMEs, (ii) CCR recalibrated SMEs, (iii) for the MME consited from the
raw SMEs, and (iv) for the MME constructed from the CCR-corre S®Es. The
results are presented as averages ovehigh-predictability grid-pointsHPGs,
Fig. 9a) and allow-predictability grid-point§LPGs, Fig. 9b). HPGs (LPGs) are
thereby defined as those gridpoints, where the averagetjteodel predictabil-
ity of the three participating SMEs is larger than 0.3 (loivem 0.1). These thresh-
olds have been chosen subjectively to have approximatelyséime number of
HPGs and LPGs. The resulting average skill values are showigs. 10-13. The
raw SME forecasts are thereby labeled vitHJ andC, the corresponding CCR-
corrected SMEs are labeled wiltr, Ur andCr; the MME forecasts constructed
from the raw (respectively recalibrated) SMEs are label&tt W (respectively

Mr). The results can be summarized as follows (for the momewotr&the columns
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denoted byr):

1. Potential model predictability (Fig. 10): All particifsag SMEs have com-
parable values of potential predictability. At the HPGs, C@Rrgly reducep,,,
from a value of about 0.45 down to a value on the order of 0.386ieMMMEC does
not affectp,,.. At the LPGs, the difference betwegn, Ur andCr on the one hand
andM on the other hand is only marginal, because there is fromefehing es-
sentially no potentially predictable signal which couldfbeher reduced by CCR.
This is consistent with the toy model results of Fig. 4.

2. Reliability (Fig. 11): The SME forecasts have a positiviat@lity term,
implying overconfidence as expected. Both CCR and MMEC clearprove the
reliability, with CCR providing a better, though not perfealiability correction,
regardless whether HPGs or LPGs are considered. The obisarifaat CCR does
not improve RE L down to zero differs from the toy model experiments and is
presumably due to the comparatively short record of trgimiata and deviations
from Gaussianity, leading to errors in estimating the liécalion parametersand
S.

3. Resolution (Fig. 12): MMEC improves thg ¢ score at HPGs by about
5%, while p,4rc is essentially left unchanged at the LPGs. CCR, on the other
hand, destroys resolution, particularly at the LPGs. Therdabservation is dif-
ferent from the toy model results and is, again, presumabé/td errors in the
recalibration parameter estimates.

4. RPSS (Fig. 13): At the HPGs (LPGSs) the average RPSS of the 8iviEs
is 0.16 (-0.17). CCR improves this skill score to an average18 0-0.07), while
MMEC yields 0.22 (-0.11). This means, both CCR and MMEC impriteeskill
values. However, MMEC vyields higher skill scores at the HRG&reas CCR
performs better at the LPGs. In other words, there are dongit(hnamely low
potential predictability), under which an advanced singledel strategy such as

CCR can outperform a multi-model approach. This conclusiamfigll agreement
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with the toy model results in Fig. 7.

5. Now consider MMEs constructed from CCR corrected SM# ( Figs. 10-
13 show that, regardless which skill metric is considekddis by and large of the
same order of magnitude &3, Ur andCr, i.e. the combination does not induce
much added value beyond the effect of CCR alone. In particoitserved losses in
resolution and correlation due to CCR cannot be regained lsesuient MMEC.

All'in all, this evaluation shows that, despite the compaedy short verifica-
tion record available, and despite the very simplifyinguaggtions concerning the
Gaussian behavior of observations and forecasts, the kejusions drawn from
the toy-model experiments are reproduced astonishingliy(aart from the con-
servation of resolution by CCR). Most notably, also the readasts indicate that
MMEC not only outperforms the skill values of raw SMEs, bigtaabf recalibrated
SMEs, however only if a pronounced potential model preditity is present. For
situations with low predictability, similar if not bettekil scores can be achieved

by recalibration.

c. Generalization to skewed distributions: Forecasts of piation

It is a major limitation of the applicability of CCR that it relges normally dis-
tributed forecasts and climatologies. Here we suggest argbration of this
method such that it can also be applied to skewed distribsitsnich as precipita-
tion. In essence, we follow the approach of Tippett et al0@d@nd apply so-called
Box-Cox-transformations (see Appendix C), which only depemd parametek
and make the data approximately Gaussian. More specifitiadyfollowing steps
are applied to recalibrate the precipitation forecastsstlyj both for the obser-
vations and the forecasts, optimum Box-Cox-transformatemameters\,;,, and
Arest are estimated from a maximum likelhood approach (Appendiai@) ap-

plied to make the data normal. CCR as defined in Egs. 5-7 is thairedmpn the
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transformed data. The resulting recalibrated forecast ded finally transformed
back into observation space, applying an invers Box-Coxstoam with parame-
ter Agpsy-

As above, skill is evaluated both for the three raw SMEsY, C), the corre-
sponding recalibrated SME&K Ur, Cr), and the MMESM andMr. Again, the
results are stratified on HPGs and LPGs as shown in Fig. 14 tRat the number
of HPGs is much lower than for the temperature forecastsgn®iHere we only
consider theRPS'S skill score since the ensemble-mean based metrics of relia-
bility (REL) and resolutionp, 4 ¢ as introduced in Section 4 are problematic to
interpret if applied on skewed data. Fig. 15 shows that,lanhgito the discussion
above, both CCR and MMEC improve the skill values, with MMECngemore
effective at HPGs and CCR being more effective at LPGs. Aghmskill value
of the MME constructed from recalibrated SMBdr() is comparable to the skill
values of the recalibrated SMEs alone. However, note théiteaHPGs the gain
in prediction skill due to CCR is less pronounced than for tenajpee forecasts.
This is probably due to additional uncertainties arisirgnfrthe small number of
HPGs and the estimation of the Box-Cox parameters, whoseacseensitively
depends on the length of the training record. Neverthelbese results imply
that the application of suitable transformations can iddee a viable option to

generalize Gaussian recalibration methods to skewed deleas precipitation.

7. Conclusions

Multi-model ensemble combination (MMEC) is a well-estabdid technique to
improve the prediction skill of ensemble forecasts. Howegeen that MMEC
essentially aims at improving the forecast reliability, mave raised and discussed
the question as to whether the same effect could be achigveah lappropriate

recalibration. For that purpose, an easy-to-implememntatie-conserving recali-
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bration (CCR) technique has been derived and applied. Whil€&@R technique

is based on the assumption of Gaussian forecast distnitgjtipcan be made ap-
plicable to skewed distributions such as precipitation pglgng an appropriate
transformation.

Our discussion has been largely based on a stochastic ¢genefaynthetic
and Gaussian forecast-observations pairs. This “toy midde two free param-
eters controlling two essential statistical propertiefooécast ensembles: the un-
derlying potential model predictability of the forecagtsystem, and the reliability
of the ensemble distributions. The toy model has been ussgstematically gen-
erate forecast ensembles of varying characteristics.€lioescasts have then been
corrected by CCR or combined to a multi-model. It is therebyiaed that all
single model ensembles (SMEs) contributing to a multi-nhetsemble (MME)
see the same predictable signal, an assumption that calyrnegtistified in the
context of seasonal forecasting. Four skill metrics haventapplied to assess the
impacts of CCR and MMEC: potential model predictability, rkiidy, resolution,
and the ranked probability skill score (RPSS).

The central conclusion of this study is that both MMEC and CCRrowe the
forecast reliability. However, while MMEC simultaneousiyiproves resolution,
resolution is in principle conserved by CCR. Potential predidity, on the other
hand, is conserved by MMEC but reduced by CCR. These findingsestdjoat
MMEC is superior from a principle point of view in that it prioles sharper reli-
able forecasts then CCR. However, this statement only holdsdl imulti-models
are considered, i.e. MMEs consisting of infinitely many SMiith independent
model error terms. In a real forecasting context, the swcoeMMEC strongly
decreases if only a few SMEs contribute to the MME, or if théividual model
errors are correlated. Under such conditions, CCR-corredW#eisStan be much
more reliable than a MME and consequently yield higher RPSiBwsltues, at

least in regions of low potential predictability when th&utdon of predictable sig-
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nal essentially does not matter while overconfidence doawing said that, also
the effect of CCR can be strongly deteriorated if the estimaticthe recalibration
parameter is not robust, for example due to short data rearévrong distribu-
tional assumptions. All these conclusions have been coedioy an evaluation of
real seasonal ensemble forecasts of near-surface tenmgeaaid precipitation.

Many forecast providers and users may now ask the questhich method
is better then?”. In short, our evaluations have shown thatquestion cannot be
easily answered in such generic term, since it depends oy aspects, includ-
ing the multi-faceted nature of prediction skill, econoroansiderations, and the
potential predictability of the system itself. Indeed, ttadue of MMEC depends
on questions such as: How many models are available for a-matiel? How
independent are these models from each other in terms ctwteuand model er-
rors? How expensive is it to run several models, respegtizebbtain model data
from different weather and climate prediction centers tydeCan the systematic
biases of the SMEs be identified and removed prior to comibimatDoes the user
want forecasts with optimum sharpness and resolutionerdktan optimum reli-
ability? The value of CCR, on the other hand, depends on qusstiach as: Is
a sufficiently long record of hindcast and observation dat@lable so that robust
estimates of the CCR parameters can be obtained? How expansitleese hind-
cast data? How well are the distributional assumptionsfsadi? And does the
user put higher priority on the reliability of the forecasasher than on optimum
resolution?

All in all, and given the principle superiority of MMEC, we emarage the
combination of as many models as possible as a first choicekinmze the pre-
diction skill. CCR, on the other hand, is suggested as a reaoatérnative to
obtain reliable forecasts if a “good” multi-model is not é&ble or too expensive.

Finally, note that the joint application of both MMEC and CCRultbbe a

promising approach to further optimize the forecasts. H@awehis requires that

28



CCR and MMEC are used in the correct order: The multi-model ¢oation of
CCR-corrected SMEs is only of little effect, since the parttipg SMEs already
are reliable. If, on the other hand, the raw SMEs are first ¢goeh thus improving
resolution, and then recalibrated, the forecasts can at iegrinciple be made
reliable under minimum dilution of potentially predictaldignal. However, a more
sophisticated recalibration scheme than the one presantbis study is required
for this task. Such a recalibration scheme must be able towd#ramulti-modal

ensemble distributions, which are typical for (non-idéaNIEs.

Appendix A
Derivation of the CCR (climate conserving recalibration) gareters

In this Appendix Eqgs. 6 and 7 are derived. let), denote “averaging over time
t” and let(...); denote “averaging over the ensemble membérsSimilarly, let
vary (...) denote a variance evaluated acroésandvar; (...) a variance evaluated
across.. Further assume that the individual ensemble membars statistically
indistinguishable, and that the number of samples and drisemembers is suffi-
ciently large that removing one sample or ensemble memle= ot substantially

affect the results. We start from Eq. 5:

fz‘(CCR) = rpup+ se

As explained in Section 2,ands are chosen such that the following two condi-

tions are satisfied:

Condition 1: The climatology of any ensemble membeis identical to the

observation climatology, i.e.
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o, = wvarg ( fi(CCR))

= wvary (rpy + s€;)

= rzaif + s2vary (¢;) . (15)

Given that the ensemble members are statistically indjsighable from each

other, one has for alle {1,..., M }:

vary (6;) = (vare (€));

= <<72 oo (16)
Using Eq. 16 in Eq. 15 yields

2

o2 = r2aif + %02 )y . 17

ens

Condition 2: The mean square errai{S E) of the ensemble means is identical

to the time-mean intra-ensemble variance, i.e.

Plo2 = MSE (uy,)
= wvar, (rpy —x)
= war (rpg) + vary (x) — 2cov (ruyg, )

- r%if + 02 = 2rp (s, x) 0,00 (18)
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Solving Eqgs. 17 and 18 forands yields Eqgs. 6 and 7. Note that a second solution

is given byr = 0 ands = —22—, which corresponds to random sampling from
climatology.
Appendix B

Non-exchangeability of recalibrated ensemble members

As mentioned in the text, the RPSS is negatively biased fotl @nsemble sizes.
Ferro et al. (2008) have derived a formula for an unbiasachasir of the RPSS
that would be obtained was the ensemble size infinite. Horveseawill be shown
in the following, the key assumption of ensemble member Haxgeability” is
violated once ensembles have been recalibrated, thuslthnigi the application of
such a bias correction formula. Exchangeability impliespagst others, that

(a) the correlation between any two ensemble members ddedepend on
which ensemble members are chosen, p.€f;, f;) = p for all i # j with 4,5 €
{1,..., M};

(b) p is independent of the ensemble sikk i.e. new ensemble members can
be hypothetically added without changing the statisticapprties of the ensemble
members.

Without loss of generality, consider a skill-leds-member ensemble predic-
tion system withp (z, us) = 0. Applying CCR on such an ensemble yields- 0
(Eq. 6), i.e. the ensemble mean is shifted.té-rom this follows that

M—-1
W == 1 (19)

%
i=1

Were the recalibrated SME members exchangeable, condajowould re-

quire that
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p o= (A 1Y)
(CCR) = (CCR)
=1
= —[1+M-2)p

implying that
B 1
N V|

(20)

From this follows that condition (b) is not fulfilled and thhe recalibrated forecast
ensemble members are not exchangeable. Note that thisakssuforbids the bias
correction formulas of Weigel et al. (2007b,c), which aredzhon the even stricter

assumption of independent ensemble members.

Appendix C
Box-Cox-Transformations

To apply CCR on skewed precipitation data, we use a suitablepwansforma-
tion to transform the original data such that their disttidsa becomes normal.
Box and Cox (1964) have proposed a useful family of parametrigep trans-
formations, which are often referred to as Box-Cox-trans&gioms. These trans-
formations map a set efdata valuey = (v, ..., y,,) to another set of transformed
data values™ = (y\V, ..., yW), with the parametek defining a particular trans-

formation. This family of transformations is given by:

yW = R (21)
logy (A=0)

An optimum value for\ is commonly obtained by maximizing the logarithm
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of the likelihood functionL (for details see Box and Cox 1964), which is given by

n (y® — )2
log (L(y. ) = —%log {z@ny)

with: (22)
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Figure 1: lllustration of reliable and unreliable foresastonsider a climatology of observed
outcomes (a). Under the influence of anomalies in relevahpagdictable boundary conditions
(e.g. SST inthe context of seasonal forecasting), thelligton of possible outcomes is shifted
and sharpened w.r.t. climatology (b). The expectation & tlonstrained distribution is the
potentially predictable signal,, and its standard deviation és_. A reliable EPS (c) would
fully sample this distribution of possible outcomes, giyen An unreliable EPS with ensemble
spreaw.,; # o., does not appropriately sample this distribution (d), amdftinecast signat s
can differ fromyu,. Note that the probability densities are scaled diffesehdére for illustative
purposes.
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Figure 2: lllustration of the effect of multi-model ensemldombination (see also Fig. 12 in
Weigel et al. 2008b). The combination of overconfident SM@&3 L SME; (b) 2 SMEs; (c)

3 SMEs; (d) 1000 SMEs] successively widens the ensemblad@med reduces the ensemble
overconfidence, thus making the forecasts more and moablelas the number of partici-
pating SMEs grows. If many SMEs with independent error tespisee text for details) are
combined, then MMEC eventually adequately samples thedisttibution of potential out-
comes that are consistent with the predictable signal. MNatethe probability densities are
scaled differently here for illustative purposes.
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Figure 3: lllustration of the effect of recalibration. Couesi an overconfident ensemble pre-
diction and a potentially predictable signal (a). Due to the ensemble overconfidence and the
associated uncertainty, a partof is perceived as unpredictable noise by the EPS, leading to
a reduced effectively predictable signgf’/ (b). From the back statistics of past forecasts and
observations, recalibration factors can be calculatedhvrgscale the forecast ensembles such

that they fully sample the distribution of possible outcentigat are consistent with// (c).
Note that the probability densities are scaled differehdye for illustative purposes.
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Figure 4: Potential model predictabilipy,; of toy model forecasts as a function®f (potential
SME predictability). Solid black line: Raw SME forecastssdad black line: CCR-corrected
SMEs; thin gray line: MMEs consisting of two SMEs (“dual méiglevith independent model
error termseg; dashed gray line: dual model with correlated(correlation coefficient 0.5);
heavy gray line: ideal MME (infinite number of SMEs with inggplent;). Note that all lines

apart from the dashed black one overlay.
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Figure 5: As Fig. 4, but for reliabilityR £ L.
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Figure 9: Grid-points (in gray) of (a) high seasonal preahdity and (b) low seasonal pre-
dictability, evaluated for JJA-averages of 2 m temperatitie lead-time 1 month. Predictabil-
ity is considered “high”, respectively “low”, if the averagorrelation of the forecasts of the
U, andC models with the observations is larger than 0.3, respdgtiverer than 0.1.
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Figure 10: Potential model predictability,(;) for real seasonal forecasts of JJA-averages of 2
m temperature, with a lead-time of one month, obtained floelDEMETER database for the
period 1980-2001. Values of,,; are determined grid-pointwise and averaged over (a) atl-hig
predictability grid-points and (b) over all low-predicthty grid-points as shown in Fig. 9. The
evaluations are carried out for the raw single model foresdasU, C; for the CCR-corrected
single model forecast&r, Ur, Cr; for the multi-modelM that is constructed from the raw
forecasts E, U, and C; and for the multi-modét that is constructed from the recalibrated
forecast<Er, Ur, andCr. The recalibration parameters are estimated in retraaativde from

the 20 years prior to each target year.
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Figure 11: As Fig. 10, but for the reliabilitit £'L.

55



resolution

resolution

0.8

0.7

0.6

0.5

(b)
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Figure 14: As Fig. 9, but for precipitation.
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Figure 15: As Fig. 13, but for precipitation. The recalilwatparameters are estimated by a
one-year out cross-validation.
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