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Abstract

Multi-model ensemble combination (MMEC) has become an accepted tech-

nique to improve probabilistic forecasts at short to long-range time scales. MMEC

techniques typically widen ensemble spread, thus improving the dispersion char-

acteristics and the reliability of the forecasts. This raises the question as to whether

the same effect could be achieved in a potentially cheaper way by rescaling single

model ensemble forecasts a posteriori such that they becomereliable. In this study

a climate conserving recalibration (CCR) technique is derivedand compared to

MMEC.

With a simple stochastic toy model we show that both CCR and MMECsuc-

cessfully improve forecast reliability. The difference between these two methods is

that CCR conserves resolution but inevitably “dilutes” the potentially predictable

signal, while MMEC is in the ideal case able to fully retain the predictable sig-

nal and to improve resolution. Therefore, MMEC is conceptually to be preferred,

particularly since the effect of CCR depends on the length of the data record and

on distributional assumptions. In reality, however, multi-models consist only of a

finite number of participating single models, and the model errors are often cor-

related. Under such conditions, and depending on the skill metric applied, CCR

corrected single models can on average have comparable skill as multi-model en-

sembles, particularly when the potential model predictability is low. Using sea-

sonal near-surface temperature and precipitation forecasts of three models of the

DEMETER dataset, we show that the conclusions drawn from thetoy-model ex-

periments hold equally in a real multi-model ensemble prediction system.

All in all, it is not possible to make a general statement on whether CCR or

MMEC is the better method. Rather it seems that optimum forecasts can be ob-

tained by a combination of both methods, but only if first MMECand then CCR is

applied. The opposite order - first CCR, then MMEC - is shown to be of only little

effect, at least in the context of seasonal forecasts.
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1. Introduction

The use of ensemble prediction systems (EPS) has become a matter of routine in

the context of weather and climate risk management, and sophisticated methods of

ensemble generation are meanwhile well-established. However, while such ensem-

bles successfully quantify the forecast uncertainties arising from the uncertainties

in the model initialization, they fail to capture the uncertainties arising from errors

and simplifications in the model itself. For example, the uncertainties due to the pa-

rameterization of physical processes, the effect of unresolved scales, or imperfect

boundary conditions, are not quantified (Buizza et al. 2005; Schwierz et al. 2006;

Weigel et al. 2007a). Consequently, ensemble distributionstypically underestimate

the true forecast uncertainty and tend to be overconfident (or “underdispersive”),

i.e. they are too sharp while being centered at the wrong value.

As a pragmatic approach to overcome this problem, it has beensuggested

to combine several ensemble prediction systems to form a multi-model super-

ensemble (Krishnamurti et al. 1999; Palmer et al. 2004). That way, at least a crude

estimate of the range of uncertainties due to model errors can be obtained. The

success of this approach has been demonstrated in many studies (e.g. Rajagopalan

et al. 2002; Robertson et al. 2004; Hagedorn et al. 2005; Stephenson et al. 2005).

Other approaches, such as the introduction of ‘stochastic physics’ (Buizza et al.

1999) or the ‘perturbed parameter’ approach (Pellerin et al. 2003) will not be con-

sidered here. In essence, multi-model ensemble combination (MMEC) widens the

ensemble spread and reduces the root mean square error (rmse) of the ensemble

means, thus reducing forecast overconfidence and improvingthe forecast reliabil-

ity. Indeed, for seasonal forecasts it has been shown that MMEC is of only little

effect if the single model ensembles (SMEs) contributing tothe multi-model en-

semble (MME) are already reliable (Weigel et al. 2008b; Weigel and Bowler 2009).

But does it then really need a multi-model approach to reduce the overconfidence
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of ensemble forecasts? Could the same effect not be achieved in a cheaper way

by “simply” rescaling unreliable SMEs a posteriori such that they become reliable,

i.e. by an appropriate recalibration1? Is there a difference at all between MMEs on

the one hand and recalibrated SMEs on the other hand with respect to their skill

properties?

There are many studies which demonstrate that recalibration, as well as related

techniques such as ‘ensemble dressing’ (Roulston and Smith 2003), do improve the

prediction skill significantly (e.g. Atger 2003; Doblas-Reyes et al. 2005; Feddersen

and Andersen 2005), but the conceptual differences betweena reliability correction

by MMEC and a reliability correction by recalibration have only been addressed

in very few studies. Doblas-Reyes et al. (2005), for example,conclude from the

evaluation of seasonal forecasts that ensemble spread correction does improve the

prediction skill, but not beyond the skill of a MME. However,their recalibration

procedure not only rescales the ensembles but also correctsfor systematic spatial

shifts, making it difficult to quantify the mere effect of ensemble spread correction.

Moreover, they have not corrected for ensemble size inducedbiases when compar-

ing the prediction skill of SMEs and MMEs, thus being unfair against the single

models (Weigel et al. 2007b,c). Indeed, applying a debiasedverification context

and a stochastic toy model, the study of Weigel et al. (2008b)indicates that recali-

brated SMEs actuallycanoutperform a MME under certain conditions, but at the

cost of correlation between the forecasts and the observations.

The present study seeks to close the gaps of Doblas-Reyes et al. (2005) and

Weigel et al. (2008b) and seeks to comprehensively answer the following ques-

tions: What is the fundamental difference between the skill improvement due

to MMEC and the skill improvement due to appropriate recalibration? How do

1Following Mason (2008) we will use the term “calibration” for the correction of systematic errors, such as
systematic biases in model climatology, while the term “recalibration” will refer to additional corrections of the
model output to improve reliability, e.g. by ensemble inflation. In the remainder of this study, “ensemble spread
correction” and “recalibration” will be used as synonyms.
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MMEC and recalibration affect the different attributes of prediction skill? And

can one of these two techniques be considered more valuable than the other one

from a user perspective? Or should they be applied in unison?And if yes, in which

order?

We will investigate these questions by applying an improvedand, for the con-

text of seasonal forecasts, more realistic version of the simple synthetic Gaussian

forecast ensemble generator (“toy model”) used by Weigel etal. (2008b), and by

evaluating temperature and precipitation forecasts of a real seasonal MME predic-

tion system.

The paper is structured as follows. Section 2 presents the conceptual back-

ground of this study, and the methods of MMEC and recalibration are introduced.

Sections 3 and 4 describe the stochastic toy model and the verification context. In

Section 5, the core of this study, the toy model is systematically applied to inves-

tigate and discuss the differing effects of MMEC and recalibration on prediction

skill. The findings are substantiated with a real seasonal MME prediction system

in Section 6, and a generalization of the recalibration method to skewed data is

suggested. Concluding remarks are presented in Section 7.

2. Methods

a. Multi-model ensemble combination (MMEC)

MMEs are constructed by simply pooling together the participating single model

ensembles (SMEs) with each ensemble member having equal weight (e.g. Hage-

dorn et al. 2005). More sophisticated approaches in which the participating SMEs

are weighted according to their prior performance (e.g. Rajagopalan et al. 2002;

Robertson et al. 2004; Stephenson et al. 2005; DelSole 2007; Weigel et al. 2008b;

Pẽna and van den Dool 2008) are not considered here. Note that, when apply-
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ing MMEC and discussing its effects, we always assume that systematic biases in

mean and variance of the model climatologies have been removed prior to model

combination as described, e.g., by Weigel et al. (2008b). The potentially beneficial

effect of MMEC on such systematic errors is therefore not considered in this study.

b. Climate-conserving recalibration (CCR)

We now derive the recalibration method applied in this study. The concept itself is

not new and has already been applied by Doblas-Reyes et al. (2005). However, a

theoretical derivation has not been presented in literature. Since the recalibration

algorithm is designed such that it does not introduce systematic biases in mean and

variance to the model climatologies, it will henceforth be referred to as climate

conserving recalibration (CCR).

We start from a conceptual model of (seasonal) predictability, similar to the one

described by Kharin and Zwiers (2003). Consider a set of observationsx (e.g. sea-

sonal averages of surface temperature at a given location).Assume that each ob-

servation can be formulated as the sum of a model-predictable signalµx and an

unpredictable noise termǫx, that isx = µx + ǫx. Following Kharin and Zwiers

(2003),µx can be thought of as the expected atmospheric response to slowly vary-

ing and predictable boundary conditions such as anomalies in sea-surface tempera-

ture, whileǫx represents the chaotic and unpredictable components of theobserved

dynamical system.x, µx andǫx are assumed to be stochastic Gaussian processes

with zero mean, i.e. anomalies are considered rather than absolute values. Let

σ2
x andσ2

µx
be the variances ofx andµx across time. Further letσ2

ǫx
(t) be the

unpredictable internal variability at timet, i.e. the variance of the (hypothetical)

distribution of possible outcomes, given the predictable signalµx(t). Note thatσ2
ǫx

is time-dependent, that is the level of predictability is allowed to vary from case to

case. Under these assumptions, a specific observation at time t can be formulated
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as:

x(t) = µx(t) + ǫx(t) (1)

with :

µx(t) ∼ N (0, σµx
)

ǫx(t) ∼ N (0, σǫx
(t)) .

∼ N (µ, σ) thereby means:a random number drawn from a normal distribution

with meanµ and varianceσ2. This concept is illustrated in Figs. 1(a) and (b): the

presence of a given predictable signalµx shifts, and on average also narrows, the

distribution of possible outcomes with respect to climatology.

Now assume that prior to each observationx a correspondingM -member en-

semble forecastf = (f1, f2, ..., fM ) has been issued. Assume that these forecasts

are issued as anomalies with respect to the mean of the model climatology. If the

ensemble forecasts are perfectly reliable, then the observationsx and the individ-

ual ensemble member forecastsfi should be statistically indistinguishable from

each other for alli ∈ {1, ...,M}. This implies (i) thatσ2
fi

= σ2
x (whereσ2

fi
is the

variance offi across time) and (ii) that, for any given predictable signalµx(t), each

forecast memberfi(t) represents an equally likely random sample from the distri-

bution of possible observable states, given the predictable signalµx(t). A reliable

ensemble forecast therefore has the following structure:

fi(t) = µx(t) + ǫi(t) (2)

with :

ǫi(t) ∼ N (0, σǫx
(t)) .
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The ensemble mean is then an unbiased estimator of the predictable signal, and

the ensemble spread quantifies the uncertainty of the true outcome (illustrated in

Fig. 1c).

For real ensemble prediction systems, however, model climatologies tend to be

different from the observed climatology (i.e.σ2
fi
6= σ2

x), and the expected ensemble

meansµf , that is thepredictedsignals, are not identical with thepredictablesignals

µx. In the general case, Eq. 2 must therefore be formulated as follows:

fi(t) = µf (t) + ǫi(t) (3)

with :

µf (t) ∼ N (0, σµf
)

ǫi(t) ∼ N (0, σens(t))

(4)

Note thatσens(t) quantifies the intra-ensemble spread at timet and generally is

different fromσǫx
(t). Also note that the individual member forecastsfi, while still

being statistically indistinguishable from each other, are now statistically different

from the observationsx. In such a forecasting system, the ensemble mean is not

an unbiased estimator of the predictable signal any more (see Fig. 1d) and the

forecasts are unreliable.

To make unreliable forecasts reliable, we employ the following criterion of

reliability which is valid for normally distributed ensemble forecasts (Toth et al.

2003; Palmer et al. 2006): ensembles are reliable if, and only if, the mean square

error (MSE) of the ensemble mean forecasts,MSE (µf , x), is identical to the time-

mean intra-ensemble variance, denoted by〈σ2
ens〉t. The basic idea of CCR is to

scale the ensemble mean forecastsµf by a factorr and to scale the ensemble
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spreads by a factors, that is to construct new forecasts

f
(CCR)
i = rµf + sǫi

=: µ
(CCR)
f + ǫ

(CCR)
i (5)

such that (i) the aforementioned reliability criterion is satisfied, and (ii) the forecast

climatology is identical to the observation climatology. As shown in Appendix A,

these conditions are fulfilled if

r = ρ (x, µf )
σx

σµf

(6)

s =
√

1 − ρ (x, µf )
2 σx
√

〈σ2
ens〉t

. (7)

ρ (µf , x) is the Pearson correlation coefficient betweenx andµf . Note that, if the

model climatology has a sytematic bias in variance (i.e.σ2
fi

6= σ2
x), this is auto-

matically corrected for by CCR. Indeed, regardless whether themodel climatology

is explicitly calibrated prior to CCR or whether CCR is directly applied, in both

cases the same values forf
(CCR)
i would be obtained.

3. The stochastic toy model

a. Definition

Motivated from the conceptual model of Kharin and Zwiers (2003), we have devel-

oped a synthetic Gaussian generator of forecast-observation-pairs. It is designed

such that, for a given predictable signalµx, it generates an observationx and a cor-

respondingM -member ensemble forecastf = (f1, ..., fM ) fulfilling preset condi-

tions with respect to forecast skill and ensemble properties. These conditions are
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controlled by two free parameters,α andβ, with α ∈ [0, 1] andβ ∈
[

0,
√

1 − α2
]

.

As will be elucidated further below,α controls the potential model predictability,

while β controls the dispersion characteristics of the forecast ensembles. The toy

model has standardized and well-calibrated climatologies, i.e.σ2
x = σ2

fi
= 1 for all

i ∈ {1, ...,M}.

For given values ofα andβ, the following three steps are undertaken to gener-

ate a forecast-observation-pair:

Step 1:A predictable signalµx is sampled:

µx ∼ N (0, α) . (8)

Step 2:An “observation”x is constructed by sampling an unpredictable noise

termǫx, which is then added toµx:

x = µx + ǫx (9)

with:

ǫx ∼ N
(

0,
√

1 − α2
)

.

Note thatσ2
x = 1 for all α ∈ [0, 1]. Also note thatσ2

ǫx
is uniquely determined byα

and hence, ifα is kept constant, does not vary from observation to observation (in

contrast to Eq. 1).

Step 3:A “forecast ensemble”f is constructed by imposing a scalar perturba-

tion ǫβ and an independently sampled vector perturbation(ǫ1, ..., ǫM ) on the pre-

dictable signalµx:
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(10)

with:

ǫβ ∼ N (0, β)

ǫ1, ǫ2, ..., ǫM ∼ N (0, σens)

σens =
√

1 − α2 − β2 .

Note that the forecast signalµf = µx + ǫβ is generally different fromµx, and note

thatσ2
fi

= 1 for all α ∈ [0, 1] and allβ ∈
[

0,
√

1 − α2
]

. Further note thatσens only

depends onα andβ and hence, ifα andβ are kept constant, does not vary from

forecast to forecast (in contrast to Eq. 3).

If a multi-model consisting ofN SMEs is to be constructed, step 3 is repeated

N times, yieldingN forecast ensemblesf(1), ..., f(N) which are then pooled to-

gether to a MME. Note that here it is assumed that all participating SMEs “see”

the same predictable signalµx. Transferred to a real prediction context, this im-

plies that all models are assumed to be based on the same sources and processes

of predictability, but differ in the way the ensembles represent the remaining un-

certainties. At least in the context of seasonal forecasting, this assumption can be

justified to some degree (Weigel and Bowler 2009), given that at present state-of-

the-art seasonal prediction systems reveal globally very similar patterns of poten-

tial predictability (Yoo and Kang 2005), and given that theyperform almost equally

well in predicting tropical Pacific SST anomalies (Goddard et al. 2001), which are

associated with ENSO, the most dominant signal of global seasonal climate vari-

ability.
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b. Interpretation ofα andβ

How can the two design parametersα andβ be interpreted? By construction,α

controls the variance of the predictable signalµx and thus also the variance of the

unpredictable noiseǫx. If α = 0 the predictable signalµx is zero and the variance

of ǫx is 1. Asα grows,µx increases in strength with respect to the noise until, for

α = 1, ǫx is zero. Indeed, the ratioσ2
µx

/σ2
x = α2 is often referred to as a the po-

tential predictability of the system (Zwiers 1996; Rowell 1998; Kharin and Zwiers

2003); in this terminology,α therefore controls the potential model predictabil-

ity2 of the toy model. From Eqs. 9 and 10 one can derive thatρ(x, fi) = α2,

i.e. the potential model predictability can be conveniently estimated from the av-

erage correlation between the individual ensemble membersand the observations

(see Section 4a).

The second parameter,β, controls the error termǫβ and thus the degree to

which the predicted signalµf deviates from the predictable signalµx - rather like

the idea of model error which affects all ensemble members equally. If β = 0,

µf is identical toµx and the ensemble members truly sample the uncertainties due

to the unpredictable noiseǫx, i.e. the forecasts arereliable (see also Weigel and

Bowler 2009). Asβ grows, the ensemble spread (controlled byσens) decreases

while the magnitude ofǫβ, i.e. the random error ofµf , increases. For positiveβ,

the ensemble forecasts are too sharp while being centered atthe wrong location.

Thus,β controls the degree of ensemble overconfidence (or underdispersion) - a

frequently observed characteristic of real ensemble forecasts (e.g. Weigel et al.

2008a,b).

2In literature, the term “potential predictability” is alsooften referred to as the skill that is obtained if ensemble
members are verified against each other rather than against observations (perfect model approach, e.g. Müller et al.
2004).
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4. Verification

In the following the verification context of this study is discussed. Since forecast

quality is a multi-faceted term and cannot be summarized by asingle skill score

(e.g. Murphy 1991), four skill metrics will be applied to characterize the impacts

of MMEC and CCR. These are (a) potential model predictability, (b) reliability, (c)

discrimination, and (d) the ranked probability skill score(RPSS).

a. Potential model predictability

In Section 3b it has been shown that the Pearson correlation coefficient between the

individual ensemble members and the observations is a measure for the potential

predictability of the toy model (in the sense as defined by Kharin and Zwiers 2003).

We therefore apply

ρpot =
1

M

M
∑

i=1

ρ(fi, x) . (11)

as a measure of potential model predictability, withρ (fi, x) being the Pearson

correlation coefficient between thei-th ensemble member and the observations.M

is the ensemble size.

b. Reliability

Reliability quantifies how consistent the forecast probabilities are with the rel-

ative frequencies of the observed outcomes (e.g. Mason and Stephenson 2008).

As already mentioned in Section 2b, normally distributed ensemble forecasts are

reliable if and only if thermse of ensemble means and observations is identi-

cal to the time-mean ensemble spread
√

〈σ2
ens〉. If

√

〈σ2
ens〉 > rmse(µf , x) the

forecasts are underconfident (only rarely observed in real ensemble forecasts), if
√

〈σ2
ens〉 < rmse(µf , x) the forecasts are overconfident. Based on this fact, we
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define as a measure of reliability:

REL =

(

rmse(µf , x) −
√

〈σ2
ens〉

)

rmse(µf , x)
(12)

If REL = 0 (REL > 0; REL < 0) the forecasts are reliable (overconfident;

underconfident).

c. Discrimination (resolution)

The forecast attribute ofdiscriminationquantifies the degree to which forecast dif-

fer, given different outcomes. As a measure of discrimination we apply the prob-

ability that, given any two observations, the mutual ranking of these two observa-

tions can be correctly predicted from the corresponding ensemble mean forecasts.

This measure is a special case of thetwo-alternative forced choice scorep2AFC

which has been described in detail by Mason and Weigel (2008). In the present

context, it is given by

p2AFC = 0.5 [τ (µf , x) + 1] . (13)

τ (µf , x) thereby denotes Kendall’s (ranked) correlation coefficient (Sheshkin 2007)

between the ensemble means and the observations.

Note that a non-informative prediction system hasp2AFC = 0.5. This can be

plausibly interpreted as the probability of getting the relative ranking of any two

observations right by simple guessing. Also note that, since τ (µf , x) = τ (x, µf ),

thep2AFC can here equally be interpreted as the probability that the observed out-

comes differ, given different forecasts. This is a forecastattribute that is known as

resolution(e.g. Mason and Stephenson 2008). Resolution and discrimination will

henceforth be used as synonyms.
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d. Ranked probability skill score

The RPSS (Epstein 1969; Murphy 1969, 1971) is one of the most widely used

summary skill scores and measures both reliability and resolution. It is a squared

measure comparing the cumulative probabilities of categorical forecast and obser-

vation vectors relative to a climatological forecast strategy. In this study, the RPSS

will be applied for three equiprobable categories.

A big caveat of the RPSS is its strong negative bias for small ensemble sizes

(e.g. Buizza and Palmer 1998; Richardson 2001; Kumar et al. 2001; Mason 2004).

The reason for this bias is theintrinsic unreliability of small ensembles, leading

to inconsistencies in the formulation of the RPSS. In the context of the present

study this property is problematic, since it implies that the RPSS favors MMEs

due to their larger ensemble size. To ensure a fair, i.e. ensemble-size independent,

comparison between SMEs (ensemble sizeM ) and MMEs, we randomly sam-

ple sub-ensembles of sizeM from the multi-model and use these sub-ensembles,

rather than the full MMEs, for verification. An alternative strategy that is some-

times applied, namely the use of a correction formula to remove the ensemble-size

dependent bias (Weigel et al. 2007b,c; Ferro et al. 2008), cannot be applied here

because the underlying assumption of “ensemble member exchangeability” does

not hold for recalibrated ensembles (see Appendix B).

5. MMEC and CCR of toy model forecasts

In this section we apply the toy model of Section 3 and the verification context of

Section 4 to systematically investigate the effects of MMECand CCR on prediction

skill.
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a. The effect of MMEC

The effect of MMEC has already been investigated in detail inWeigel et al. (2008b)

and is therefore only briefly summarized here. Assume that, for a given poten-

tially predictable signalµx, a total ofN overconfident toy model SME forecasts

have been issued and are to be combined. Further assume that,without loss of

generality, all SMEs are based on the same toy model parameters α andβ, and

that the individual “model error terms”ǫβ are independent from each other. Each

of these SMEs then has an ensemble spread ofσens =
√

1 − α2 − β2. The ex-

pected ensemble mean of the resulting MME forecast is located at µ
(MME)
f =

µx + 1
N

[ǫβ(1) + ... + ǫβ(N)], with ǫβ(n) being theǫβ value sampled for then-th

model. ForN → ∞, the MME meanµ(MME)
f converges towardsµx, while the

expected MME spread widens and approaches a value ofσens =
√

1 − α2, which

is the spread of a reliable SME withβ = 0. This has been discussed and proved in

Weigel et al. (2008b) and is illustrated in Fig. 2 (a corresponding illustration of the

effect of CCR is shown in Fig. 3 and will be discussed later in thetext). In other

words, the combination of independent overconfident modelswidens the MME

spread while reducing the error in the ensemble location. The larger the number

of overconfident models contributing to the MME, the more does the MME lose

its overconfidence characteristics in favor of the characteristics of well-dispersed

ensembles. Such an MME with independentǫβ andN → ∞ will henceforth be

referred to as ideal MME.

How does this behavior translate into prediction skill? Forβ = 0.7 and a

range ofα-values withα <
√

1 − β2, 100,000 sets of observations, correspond-

ing SME forecasts and “ideal” (N = 100) MME forecasts are generated. Using

these data, the expected values ofρpot (Fig. 4),REL (Fig. 5),p2AFC (Fig. 6) and

RPSS (Fig. 7) are then calculated and plotted as functions of the prescribed po-

tential SME predictabilityα2. For the moment, only consider the black solid lines
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(overconfident SME forecasts) and the heavy gray solid lines(ideal MME fore-

casts). The remaining lines will be discussed later in the text. The results can be

summarized as follows:

1. Potential model predictability (Fig. 4): MMEC leavesρpot unchanged. This

is not surprising, given that all contributing SMEs and thusalso the MME by con-

struction “see” the same potentially predictable signalµx ∼ N (0, α). Thus, under

the idealizing assumptions made, the potential model predictability is conserved

by MMEC (see also Weigel et al. 2008b).

2. Reliability (Fig. 5): The overconfident SMEs reveal positive REL-values

over the entire range ofα2, implying that the forecasts are overconfident. This is

what one would expect, given thatβ > 0. The ideal MMEs, on the other hand,

haveREL = 0 and are therefore perfectly reliable (see also Fig. 2d).

3. Resolution (Fig. 6): Thep2AFC-score of both the SMEs and the ideal MMEs

increases asα2 increases, because higher correlation implies higher discriminative

power of the forecasts. The MME thereby consistently scoreshigher than the SME,

because reduced overconfidence not only implies wider ensemble spread, but also a

reduction in the random error of the ensemble mean (Weigel etal. 2008b), thus im-

proving the probability to correctly discriminate betweenthe observed outcomes.

It is interesting to note that resolution is frequently considered to be a measure of

potential predictability, a view which is not supported by the differing behavior of

p2AFC andρpot. Indeed, a contour plot ofp2AFC for SMEs as function ofα andβ

(Fig. 8) shows that the isolines ofp2AFC are inclined and therefore not equivalent

with α, i.e. with potential predictability.

4. RPSS (Fig. 7): MMEC strongly improves the RPSS over the entire range of

α2-values, which is plausible, given the improvements in reliability and resolution.

All in all, the results show that MMEC in the ideal case fully corrects for relia-

bility deficits and improves the forecast resolution, whilethe potential predictabil-

ity is conserved. These characteristics become more, respectively less, pronounced
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asβ is increased, respectively decreased (not shown). Forβ = 0, none of the four

skill metrics is modified at all by MMEC, since the participating SMEs are already

reliable and all sampled from the same parent distribution as the MME. However,

we want to stress that this conclusion only holds if the modelerrors are sufficiently

independent, and if all participating SMEs are based on the same predictable signal

µx as is the case with the present toy model (see Section 3a).

b. The effect of CCR

What is different when CCR is applied on overconfident toymodel forecasts? We

start by formulating the CCR factorsr ands as functions ofα andβ. From Eqs. 8-

10 follows: σx = 1, σµf
=

√
α2 + β2, ρ (x, µf ) = α2/

√
α2 + β2 andσens =

√
1 − α2 − β2. Using these identities in Eqs. 6 and 7, expressions forr ands can

be formulated:

r =
α2

α2 + β2
(14)

s =

√

√

√

√

α2(1 − α2) + β2

(α2 + β2)(1 − α2 − β2)

It is easy to see thatr ≤ 1, and it can be shown thats ≥ 1. Thus, for overconfident

SMEs, CCR effectively widens (i.e. inflates) the ensemble spread (s ≥ 1) while

at the same time the ensemble mean is moved towards the climatological mean

(r ≤ 1). This means that the gain in intra-ensemble variance due toensemble

inflation is compensated by a reduction of forecast signal variance. This is required

to keep the forecast climatology well-calibrated (i.e.σ
(CCR)
fi

= σfi
= σx = 1).

As in the previous subsection, we evaluate howρpot, REL, p2AFC andRPSS

behave if CCR is applied (displayed as black dashed lines in Figs. 4-7).

1. Potential model predictability (Fig. 4): CCR strongly reducesρpot. Calcu-
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lation reveals thatρpot is reduced from a value ofα2 down to a value ofρ(CCR)
pot =

α2
(

1 + β2

α2

)−1
.

2. Reliability (Fig. 5): As for the ideal MMEs, CCR effects a perfect correction

of reliability.

3. Resolution (Fig. 6): Resolution is conserved under CCR, because the linear

transformation of the ensemble mean forecasts (viar in Eq. 6) does not modify

their relative ranking and thus preserves their discriminative power.

4. RPSS (Fig. 7): CCR improves the RPSS, but not as much as MMEC. The

reason is that MMEC, in contrast to CCR, not only improves reliability but also

improves resolution, which is rewarded by the RPSS.

All in all, the most notable effect of CCR is, apart from the improvement in

reliability, the destruction of potential model predictability. Given that the vari-

ance of the predictable signal isσ2
µx

= ρpot (Section 3b), the reduction inρpot due

to CCR implies a dilution of the predictable signal. Indeed, SMEs that have been

made reliable by CCR do not any more sample the distribution of possible out-

comes which are consistent withµx; rather, they sample the wider distribution of

outcomes which are consistent with the remaining “effectively” predictable signal

µeff
x ∼ N

(

0,
√

ρCCR
pot

)

(illustrated in Fig. 3). This observed reduction in sharp-

ness is plausible since the CCR-corrected SMEs must additionally account for the

uncertainties due toǫβ.

c. Discussion

From the toy model simulations and conceptual considerations described above,

the following fundamental difference between MMEC and CCR canbe crystal-

lized: Both methods are successful in making overconfident forecasts reliable;

however, MMEC provides a reliability correction with conserved correlation, while

CCR provides a reliability correction with conserved resolution. Conserved cor-
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relation implies an improvement in resolution, while conserved resolution implies

a reduction in correlation, or potential model predictability. This is illustrated in

the contour plot of Fig. 8: consider a given overconfident toymodel SME with pa-

rametersα andβ, which can be displayed as a point inα-β-space (e.g. point “a”).

Both MMEC and CCR move “a” down to theβ = 0 line, making the forecasts reli-

able. MMEC does so without changingα, yielding point “b” which has improved

resolution as compared to “a”. CCR, on the other hand, moves point “a” down to

theβ = 0 line along the respective isoline of resolution (point “c”), leading to a

reduction inα and thus in potential model predictability.

While these results suggest that MMEC is never inferior to CCR, regardless

which skill metric is applied, one must consider that in reality multi-models are

not “ideal”. Usually, the number of participating SMEs is small, and the model

errors (i.e. theǫβ-values in our toy model context) tend to be correlated (e.g.Yoo

and Kang 2005). To address this aspect, Figs. 4-7 additionally show the skill val-

ues obtained from adualmodel, i.e. a MME that consists of only two SMEs: once

for independentǫβ (thin solid gray line), and once for dependentǫβ (correlation

coefficient 0.5, dashed gray line). For all skill metrics apart from ρpot, the skill

improvement due to MMEC is less pronounced if only two modelsare combined,

and even worse, if the model errors are correlated. In Fig. 8 the situation of such a

more “realistic” MME is illustrated as point “d”, which is more reliable than “a”,

but not perfectly reliable as the ideal MME “b”. In terms of RPSS skill (Fig. 7),

it is interesting to note that particularly for forecasts oflow potential model pre-

dictability (i.e. smallα2), the CCR corrected SMEs are comparable if not better

than the “realistic” MMEs. The reason is that the MMEC advantage of improving

resolution (Fig. 6) is comparatively weak for smallα2 and is more than outweighed

by the better reliability correction of CCR. Having said that, it is essential to note

that in a real forecasting context also the uncertainties inthe CCR parameter es-

timation need to be considered (not done here), relativizing the above conclusion.
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Indeed, the expected reliability and skill improvement dueto CCR is reduced if

only small training data sets are available, if the ensembledistributions do not sat-

isfy the assumption of normality (further discussed in Section 6), or if the system

is subject to trends over the training period (Liniger et al.2007). This discussion

shall therefore not be understood as a plea against multi-models, but rather as a

plea to combine as many independent models as possible to maximize the benefi-

cial effect of MMEC.

Finally, for the case of imperfect MMEs, we want to discuss whether MMEC

and CCR can be combined and used in unison such that the forecasts obtain opti-

mum characteristics w.r.t. reliability and resolution. One could, for example, first

recalibrate all participating SMEs and then combine these to a MME. Alternatively,

one could first combine the “raw” SMEs and then recalibrate the resulting MME.

The first option (“recalibrate, then combine”) is without additional effect be-

yond the effect of CCR. This is because the CCR-corrected SMEs have been made

reliable and see the same predictable signalµx; under such conditions MMEC can-

not improve the prediction skill of reliable forecasts (Weigel and Bowler 2009). In

other words: Once a fraction of the potentially predictablesignal has been de-

stroyed by recalibration, this loss cannot be recovered by MMEC. Fig. 8 provides

an illustration of this situation: The combination of several SMEs that have been

CCR corrected (point “c”) is without effect, since “c” alreadyis on theβ = 0 line.

Conceptually more promising is the second approach (”combine, then recali-

brate”). As discussed above, by combining the available SMEs, reliability and res-

olution are improved by some amount without reducing the potential predictability

(point ”d” in Fig. 8 if we assume a “realistic” MME). Subsequent CCR on “d”

could then in principle remove the remaining reliability deficits without chang-

ing resolution, i.e. point “d” would be moved down to point “e”. That way, a

full reliability correction could be achieved under minimum destruction of poten-
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tial predictability. However, in the context of the presentpaper, this approach

is somewhat hypothetical since realistic MMEs tend to have multi-modal distribu-

tions (e.g. Figs. 2b and c), thus violating the Gaussian assumptions of CCR. There-

fore, other recalibration methods that are beyond the scopeof this paper would be

required to demonstrate the effect of this approach. Likely, such methods would re-

quire even larger training data sets. In the case of well-defined dichotomous events,

an approach based on reliability diagrams as applied by Palmer et al. (2008) could

be a viable option.

6. MMEC and CCR of real seasonal forecast data

So far, all results have been obtained on the basis of a simpleGaussian-type toy

model. It is the aim of this section to investigate whether the conclusions on the

effects of CCR and MMEC also hold for real seasonal ensemble predictions.

a. Data

Ensemble forecasts of three operational seasonal prediction systems are evaluated

and combined: ECMWF’s System 2 (“E” , Anderson et al. 2003), the UK Met Of-

fice’s GloSea (“U” , Gordon et al. 2000), and the coupled ocean-atmosphere model

of the Centre National de Recherches Mét́eorologiques of Ḿet́eo-France (“C” ,

Déque 1997). Hindcast data of these three models are obtainedfrom the DEME-

TER data-base (Palmer et al. 2004). Although this data-basecomprises hindcasts

of seven different models, we have restricted ourselves to the three models the

operational European Multimodel Seasonal to Interannual Prediction System (EU-

ROSIP, Vitart et al. 2007) is based upon.

We consider hindcasts of mean summer near-surface (2 meters) temperature

and total precipitation, averaged over the months June, July and August. All hind-
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casts have been started from 1 May initial conditions. For temperature, the hind-

cast period is 1960-2001. The forecast data are CCR-corrected and verified grid-

pointwise against the corresponding “observations” from the 40-yr ECMWF re-

analysis (ERA40) data set (Uppala et al. 2005). For precipitation, the observations

stem from the Global Precipitation Climatology Program (GPCP)3 (for details see

Adler et al. 2003). For data availability reasons, only the period 1979-2001 is

considered here.

Both forecasts and verifying observations are interpolatedon a grid with 2.5o x

2.5o resolution. Prior to any recalibration, combination and verification operations,

the model climatology is calibrated grid-pointwise, i.e. systematic biases in the

mean and variance of the model climatology are removed as described in Weigel

et al. (2008b). Indeed, when referring to “raw” SME forecasts, we henceforth

assume that the model climatologies have already been calibrated. For the RPSS

evaluations, three equiprobable categories are considered, just as in the toy model

experiments above. The terciles separating the three categories are determined

from the hindcast and observation data separately.

The temperature forecasts are evaluated in “retroactive mode”. This means

that for each target year to be verified, only data prior to thetarget year are used as

training data for the computation of the observation and model terciles, bias cor-

rections and the CCR rescaling parametersr ands. As target years for verification,

we chose 1980-2001. The corresponding training data stem from the respectively

20 years prior to each target year. Generally, a retroactiveevaluation is consid-

ered to yield the most realistic approximation of an operational prediction context

(Mason and Baddour 2008), particularly in the presence of non-stationarities in the

climate system such as trends (Liniger et al. 2007). The estimatedr ands values

obtained are often substantially different from 1. For example, for model“E” , typ-

ical r-values (s-values) are on the order of 0.5 (1.2), clearly indicating ensemble

3http://lwf.ncdc.noaa.gov/oa/wmo/wdcamet-ncdc.html
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overconfidence.

For the precipitation forecasts, a retroactive evaluationis not possible due to

the smaller sample size. Instead, a “one-year out cross-validation” (Wilks 2006)

is applied, meaning that all years available, apart from thetarget year, are used as

training data. Note that both for the temperature forecastsand the precipitation

verification, the length of the training data set is twenty years, which is compa-

rable to the hindcast length of real operational state-of-the-art seasonal prediction

systems.

b. Forecasts of near-surface (2m) temperature

For the evaluation of seasonal forecasts of 2m temperature we assume that the

climatologic and forecast distributions are Gaussian, so that CCR can be applied.

The assumption of normality is admittedly a very simplifying one, but can be jus-

tified as a first rough estimate for this variable (Wilks 2002,2006; Weigel et al.

2008b). For each grid-point,ρpot, REL, p2AFC andRPSS are obtained for (i) the

raw SMEs, (ii) CCR recalibrated SMEs, (iii) for the MME constructed from the

raw SMEs, and (iv) for the MME constructed from the CCR-corrected SMEs. The

results are presented as averages over allhigh-predictability grid-points(HPGs,

Fig. 9a) and alllow-predictability grid-points(LPGs, Fig. 9b). HPGs (LPGs) are

thereby defined as those gridpoints, where the average potential model predictabil-

ity of the three participating SMEs is larger than 0.3 (lowerthan 0.1). These thresh-

olds have been chosen subjectively to have approximately the same number of

HPGs and LPGs. The resulting average skill values are shown in Figs. 10-13. The

raw SME forecasts are thereby labeled withE, U andC, the corresponding CCR-

corrected SMEs are labeled withEr, Ur andCr; the MME forecasts constructed

from the raw (respectively recalibrated) SMEs are labeled with M (respectively

Mr). The results can be summarized as follows (for the moment ignore the columns
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denoted byMr):

1. Potential model predictability (Fig. 10): All participating SMEs have com-

parable values of potential predictability. At the HPGs, CCR strongly reducesρpot

from a value of about 0.45 down to a value on the order of 0.35, while MMEC does

not affectρpot. At the LPGs, the difference betweenEr, Ur andCr on the one hand

andM on the other hand is only marginal, because there is from the beginning es-

sentially no potentially predictable signal which could befurther reduced by CCR.

This is consistent with the toy model results of Fig. 4.

2. Reliability (Fig. 11): The SME forecasts have a positive reliability term,

implying overconfidence as expected. Both CCR and MMEC clearly improve the

reliability, with CCR providing a better, though not perfect,reliability correction,

regardless whether HPGs or LPGs are considered. The observation that CCR does

not improveREL down to zero differs from the toy model experiments and is

presumably due to the comparatively short record of training data and deviations

from Gaussianity, leading to errors in estimating the recalibration parametersr and

s.

3. Resolution (Fig. 12): MMEC improves thep2AFC score at HPGs by about

5%, while p2AFC is essentially left unchanged at the LPGs. CCR, on the other

hand, destroys resolution, particularly at the LPGs. The latter observation is dif-

ferent from the toy model results and is, again, presumably due to errors in the

recalibration parameter estimates.

4. RPSS (Fig. 13): At the HPGs (LPGs) the average RPSS of the three SMEs

is 0.16 (-0.17). CCR improves this skill score to an average of 0.18 (-0.07), while

MMEC yields 0.22 (-0.11). This means, both CCR and MMEC improvethe skill

values. However, MMEC yields higher skill scores at the HPGswhereas CCR

performs better at the LPGs. In other words, there are conditions (namely low

potential predictability), under which an advanced single-model strategy such as

CCR can outperform a multi-model approach. This conclusion isin full agreement
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with the toy model results in Fig. 7.

5. Now consider MMEs constructed from CCR corrected SMEs (Mr). Figs. 10-

13 show that, regardless which skill metric is considered,Mr is by and large of the

same order of magnitude asEr, Ur andCr, i.e. the combination does not induce

much added value beyond the effect of CCR alone. In particular,observed losses in

resolution and correlation due to CCR cannot be regained by subsequent MMEC.

All in all, this evaluation shows that, despite the comparatively short verifica-

tion record available, and despite the very simplifying assumptions concerning the

Gaussian behavior of observations and forecasts, the key conclusions drawn from

the toy-model experiments are reproduced astonishingly well (apart from the con-

servation of resolution by CCR). Most notably, also the real forecasts indicate that

MMEC not only outperforms the skill values of raw SMEs, but also of recalibrated

SMEs, however only if a pronounced potential model predictability is present. For

situations with low predictability, similar if not better skill scores can be achieved

by recalibration.

c. Generalization to skewed distributions: Forecasts of precipitation

It is a major limitation of the applicability of CCR that it requires normally dis-

tributed forecasts and climatologies. Here we suggest a generalization of this

method such that it can also be applied to skewed distributions such as precipita-

tion. In essence, we follow the approach of Tippett et al. (2007) and apply so-called

Box-Cox-transformations (see Appendix C), which only depend on a parameterλ

and make the data approximately Gaussian. More specifically, the following steps

are applied to recalibrate the precipitation forecasts: Firstly, both for the obser-

vations and the forecasts, optimum Box-Cox-transformation parametersλobsv and

λfcst are estimated from a maximum likelhood approach (Appendix C)and ap-

plied to make the data normal. CCR as defined in Eqs. 5-7 is then applied on the
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transformed data. The resulting recalibrated forecast data are finally transformed

back into observation space, applying an invers Box-Cox-transform with parame-

terλobsv.

As above, skill is evaluated both for the three raw SMEs (E, U, C), the corre-

sponding recalibrated SMEs (Er, Ur, Cr), and the MMEsM andMr. Again, the

results are stratified on HPGs and LPGs as shown in Fig. 14. Note that the number

of HPGs is much lower than for the temperature forecasts in Fig. 9. Here we only

consider theRPSS skill score since the ensemble-mean based metrics of relia-

bility (REL) and resolutionp2AfC as introduced in Section 4 are problematic to

interpret if applied on skewed data. Fig. 15 shows that, similarly to the discussion

above, both CCR and MMEC improve the skill values, with MMEC being more

effective at HPGs and CCR being more effective at LPGs. Again, the skill value

of the MME constructed from recalibrated SMEs (Mr) is comparable to the skill

values of the recalibrated SMEs alone. However, note that atthe HPGs the gain

in prediction skill due to CCR is less pronounced than for temperature forecasts.

This is probably due to additional uncertainties arising from the small number of

HPGs and the estimation of the Box-Cox parameters, whose accuracy sensitively

depends on the length of the training record. Nevertheless,these results imply

that the application of suitable transformations can indeed be a viable option to

generalize Gaussian recalibration methods to skewed data such as precipitation.

7. Conclusions

Multi-model ensemble combination (MMEC) is a well-established technique to

improve the prediction skill of ensemble forecasts. However, given that MMEC

essentially aims at improving the forecast reliability, wehave raised and discussed

the question as to whether the same effect could be achieved by an appropriate

recalibration. For that purpose, an easy-to-implement climate-conserving recali-
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bration (CCR) technique has been derived and applied. While thisCCR technique

is based on the assumption of Gaussian forecast distributions, it can be made ap-

plicable to skewed distributions such as precipitation by applying an appropriate

transformation.

Our discussion has been largely based on a stochastic generator of synthetic

and Gaussian forecast-observations pairs. This “toy model” has two free param-

eters controlling two essential statistical properties offorecast ensembles: the un-

derlying potential model predictability of the forecasting system, and the reliability

of the ensemble distributions. The toy model has been used tosystematically gen-

erate forecast ensembles of varying characteristics. These forecasts have then been

corrected by CCR or combined to a multi-model. It is thereby assumed that all

single model ensembles (SMEs) contributing to a multi-model ensemble (MME)

see the same predictable signal, an assumption that can mostly be justified in the

context of seasonal forecasting. Four skill metrics have been applied to assess the

impacts of CCR and MMEC: potential model predictability, reliability, resolution,

and the ranked probability skill score (RPSS).

The central conclusion of this study is that both MMEC and CCR improve the

forecast reliability. However, while MMEC simultaneouslyimproves resolution,

resolution is in principle conserved by CCR. Potential predictability, on the other

hand, is conserved by MMEC but reduced by CCR. These findings suggest that

MMEC is superior from a principle point of view in that it provides sharper reli-

able forecasts then CCR. However, this statement only holds if ideal multi-models

are considered, i.e. MMEs consisting of infinitely many SMEswith independent

model error terms. In a real forecasting context, the success of MMEC strongly

decreases if only a few SMEs contribute to the MME, or if the individual model

errors are correlated. Under such conditions, CCR-corrected SMEs can be much

more reliable than a MME and consequently yield higher RPSS skill values, at

least in regions of low potential predictability when the dilution of predictable sig-
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nal essentially does not matter while overconfidence does. Having said that, also

the effect of CCR can be strongly deteriorated if the estimation of the recalibration

parameter is not robust, for example due to short data records or wrong distribu-

tional assumptions. All these conclusions have been confirmed by an evaluation of

real seasonal ensemble forecasts of near-surface temperature and precipitation.

Many forecast providers and users may now ask the question: “Which method

is better then?”. In short, our evaluations have shown that this question cannot be

easily answered in such generic term, since it depends on many aspects, includ-

ing the multi-faceted nature of prediction skill, economicconsiderations, and the

potential predictability of the system itself. Indeed, thevalue of MMEC depends

on questions such as: How many models are available for a multi-model? How

independent are these models from each other in terms of structure and model er-

rors? How expensive is it to run several models, respectively to obtain model data

from different weather and climate prediction centers timely? Can the systematic

biases of the SMEs be identified and removed prior to combination? Does the user

want forecasts with optimum sharpness and resolution, rather than optimum reli-

ability? The value of CCR, on the other hand, depends on questions such as: Is

a sufficiently long record of hindcast and observation data available so that robust

estimates of the CCR parameters can be obtained? How expensiveare these hind-

cast data? How well are the distributional assumptions satisfied? And does the

user put higher priority on the reliability of the forecastsrather than on optimum

resolution?

All in all, and given the principle superiority of MMEC, we encourage the

combination of as many models as possible as a first choice to maximize the pre-

diction skill. CCR, on the other hand, is suggested as a reasonable alternative to

obtain reliable forecasts if a “good” multi-model is not available or too expensive.

Finally, note that the joint application of both MMEC and CCR could be a

promising approach to further optimize the forecasts. However, this requires that
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CCR and MMEC are used in the correct order: The multi-model combination of

CCR-corrected SMEs is only of little effect, since the participating SMEs already

are reliable. If, on the other hand, the raw SMEs are first combined, thus improving

resolution, and then recalibrated, the forecasts can at least in principle be made

reliable under minimum dilution of potentially predictable signal. However, a more

sophisticated recalibration scheme than the one presentedin this study is required

for this task. Such a recalibration scheme must be able to deal with multi-modal

ensemble distributions, which are typical for (non-ideal)MMEs.

Appendix A

Derivation of the CCR (climate conserving recalibration) parameters

In this Appendix Eqs. 6 and 7 are derived. Let〈...〉t denote “averaging over time

t” and let 〈...〉i denote “averaging over the ensemble membersi”. Similarly, let

vart (...) denote a variance evaluated acrosst, andvari (...) a variance evaluated

acrossi. Further assume that the individual ensemble membersi are statistically

indistinguishable, and that the number of samples and ensemble members is suffi-

ciently large that removing one sample or ensemble member does not substantially

affect the results. We start from Eq. 5:

f
(CCR)
i = rµf + sǫi .

As explained in Section 2b,r ands are chosen such that the following two condi-

tions are satisfied:

Condition 1: The climatology of any ensemble memberi is identical to the

observation climatology, i.e.
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σ2
x = vart

(

f
(CCR)
i

)

= vart (rµf + sǫi)

= r2σ2
µf

+ s2vart (ǫi) . (15)

Given that the ensemble members are statistically indistinguishable from each

other, one has for alli ∈ {1, ...,M}:

vart (ǫi) = 〈vart (ǫi)〉i

= 〈〈ǫ2
i 〉t〉i

= 〈〈ǫ2
i 〉i〉t

= 〈σ2
ens〉t . (16)

Using Eq. 16 in Eq. 15 yields

σ2
x = r2σ2

µf
+ s2〈σ2

ens〉t . (17)

Condition 2:The mean square error (MSE) of the ensemble means is identical

to the time-mean intra-ensemble variance, i.e.

s2〈σ2
ens〉t = MSE (µf , x)

= vart (rµf − x)

= vart (rµf ) + vart (x) − 2cov (rµf , x)

= r2σ2
µf

+ σ2
x − 2rρ (µf , x) σµf

σx . (18)
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Solving Eqs. 17 and 18 forr ands yields Eqs. 6 and 7. Note that a second solution

is given byr = 0 ands = σx√
〈σ2

ens〉t
, which corresponds to random sampling from

climatology.

Appendix B

Non-exchangeability of recalibrated ensemble members

As mentioned in the text, the RPSS is negatively biased for small ensemble sizes.

Ferro et al. (2008) have derived a formula for an unbiased estimator of the RPSS

that would be obtained was the ensemble size infinite. However, as will be shown

in the following, the key assumption of ensemble member “exchangeability” is

violated once ensembles have been recalibrated, thus forbidding the application of

such a bias correction formula. Exchangeability implies, amongst others, that

(a) the correlation between any two ensemble members does not depend on

which ensemble members are chosen, i.e.ρ (fi, fj) = ρ for all i 6= j with i, j ∈

{1, ...,M};

(b) ρ is independent of the ensemble sizeM , i.e. new ensemble members can

be hypothetically added without changing the statistical properties of the ensemble

members.

Without loss of generality, consider a skill-lessM -member ensemble predic-

tion system withρ (x, µf ) = 0. Applying CCR on such an ensemble yieldsr = 0

(Eq. 6), i.e. the ensemble mean is shifted to0. From this follows that

f
(CCR)
M = −

M−1
∑

i=1

f
(CCR)
i . (19)

Were the recalibrated SME members exchangeable, condition(a) would re-

quire that

31



ρ = ρ
(

f
(CCR)
1 , f

(CCR)
M

)

= −ρ

(

f
(CCR)
1 ,

M−1
∑

i=1

f
(CCR)
i

)

= − [1 + (M − 2) ρ] ,

implying that

ρ = − 1

M − 1
(20)

From this follows that condition (b) is not fulfilled and thatthe recalibrated forecast

ensemble members are not exchangeable. Note that this result also forbids the bias

correction formulas of Weigel et al. (2007b,c), which are based on the even stricter

assumption of independent ensemble members.

Appendix C

Box-Cox-Transformations

To apply CCR on skewed precipitation data, we use a suitable power transforma-

tion to transform the original data such that their distribution becomes normal.

Box and Cox (1964) have proposed a useful family of parametric power trans-

formations, which are often referred to as Box-Cox-transformations. These trans-

formations map a set ofn data valuesy = (y1, ..., yn) to another set of transformed

data valuesy(λ) = (y
(λ)
1 , ..., y(λ)

n ), with the parameterλ defining a particular trans-

formation. This family of transformations is given by:

y(λ) =















yλ−1
λ

(λ 6= 0)

log y (λ = 0)
(21)

An optimum value forλ is commonly obtained by maximizing the logarithm
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of the likelihood functionL (for details see Box and Cox 1964), which is given by

log (L(y, λ)) = −n

2
log







n
∑

i=1

(

y
(λ)
i − y(λ)

)2

n





+ (λ − 1)
n
∑

i=1

log yi

with: (22)

y(λ) =
1

n

n
∑

i=1

y
(λ)
i .
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Figure 1: Illustration of reliable and unreliable forecasts. Consider a climatology of observed
outcomes (a). Under the influence of anomalies in relevant and predictable boundary conditions
(e.g. SST in the context of seasonal forecasting), the distribution of possible outcomes is shifted
and sharpened w.r.t. climatology (b). The expectation of this constrained distribution is the
potentially predictable signalµx, and its standard deviation isσǫx

. A reliable EPS (c) would
fully sample this distribution of possible outcomes, givenµx. An unreliable EPS with ensemble
spreadσens 6= σǫx

does not appropriately sample this distribution (d), and the forecast signalµf

can differ fromµx. Note that the probability densities are scaled differently here for illustative
purposes.
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Figure 2: Illustration of the effect of multi-model ensemble combination (see also Fig. 12 in
Weigel et al. 2008b). The combination of overconfident SMEs [(a) 1 SME; (b) 2 SMEs; (c)
3 SMEs; (d) 1000 SMEs] successively widens the ensemble spread and reduces the ensemble
overconfidence, thus making the forecasts more and more reliable as the number of partici-
pating SMEs grows. If many SMEs with independent error termsǫβ (see text for details) are
combined, then MMEC eventually adequately samples the fulldistribution of potential out-
comes that are consistent with the predictable signal. Notethat the probability densities are
scaled differently here for illustative purposes.
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Figure 3: Illustration of the effect of recalibration. Consider an overconfident ensemble pre-
diction and a potentially predictable signalµx (a). Due to the ensemble overconfidence and the
associated uncertainty, a part ofµx is perceived as unpredictable noise by the EPS, leading to
a reduced effectively predictable signalµeff

x (b). From the back statistics of past forecasts and
observations, recalibration factors can be calculated which rescale the forecast ensembles such
that they fully sample the distribution of possible outcomes that are consistent withµeff

x (c).
Note that the probability densities are scaled differentlyhere for illustative purposes.
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Figure 4: Potential model predictabilityρpot of toy model forecasts as a function ofα2 (potential
SME predictability). Solid black line: Raw SME forecasts; dashed black line: CCR-corrected
SMEs; thin gray line: MMEs consisting of two SMEs (“dual model”) with independent model
error termsǫβ; dashed gray line: dual model with correlatedǫβ (correlation coefficient 0.5);
heavy gray line: ideal MME (infinite number of SMEs with independentǫβ). Note that all lines
apart from the dashed black one overlay.
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Figure 5: As Fig. 4, but for reliabilityREL.
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Figure 6: As Fig. 4, but for resolutionp2AFC .
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Figure 7: As Fig. 4, but for the RPSS.
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Figure 8: Isolines of resolution (p2AFC score) as a function of the toy model parametersα
(which controls potential model predictability) andβ (overconfidence parameter). The cir-
cled letters illustrate the effects of multi-model ensemble combination (MMEC) and climate-
conserving recalibration (CCR). Let “a” be the representationof an overconfident single model
in α-β-space. Applying MMEC (assuming infinitely many models withindependent model er-
rors) makes “a” reliable by moving it vertically down to theβ = 0 line (“b”), while CCR moves
“a” down along the isoline of resolution (“c”). MMEC is less effective if the multi-model only
consists of a few single models with correlated model errors(“d”). Applying an appropriate
form of CCR on such a more realistic multi-model could ideally yield point “e”.
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(a) (b)

Figure 9: Grid-points (in gray) of (a) high seasonal predictability and (b) low seasonal pre-
dictability, evaluated for JJA-averages of 2 m temperaturewith lead-time 1 month. Predictabil-
ity is considered “high”, respectively “low”, if the average correlation of the forecasts of theE,
U, andC models with the observations is larger than 0.3, respectively lower than 0.1.
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Figure 10: Potential model predictability (ρpot) for real seasonal forecasts of JJA-averages of 2
m temperature, with a lead-time of one month, obtained from the DEMETER database for the
period 1980-2001. Values ofρpot are determined grid-pointwise and averaged over (a) all high-
predictability grid-points and (b) over all low-predictability grid-points as shown in Fig. 9. The
evaluations are carried out for the raw single model forecasts E, U, C; for the CCR-corrected
single model forecastsEr, Ur, Cr; for the multi-modelM that is constructed from the raw
forecasts E, U, and C; and for the multi-modelMr that is constructed from the recalibrated
forecastsEr, Ur, andCr. The recalibration parameters are estimated in retroactive mode from
the 20 years prior to each target year.
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Figure 11: As Fig. 10, but for the reliabilityREL.
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Figure 12: As Fig. 10, but for the resolutionp2AFC .
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(a) (b)

Figure 13: As Fig. 10, but for the RPSS.
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(a) (b)

Figure 14: As Fig. 9, but for precipitation.
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(a) (b)

Figure 15: As Fig. 13, but for precipitation. The recalibration parameters are estimated by a
one-year out cross-validation.
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